Class EvolutionaryAutoML<T, TInput, TOutput>
Built-in AutoML strategy that uses an evolutionary (genetic) approach to propose new trials.
public sealed class EvolutionaryAutoML<T, TInput, TOutput> : BuiltInSupervisedAutoMLModelBase<T, TInput, TOutput>, IAutoMLModel<T, TInput, TOutput>, IFullModel<T, TInput, TOutput>, IModel<TInput, TOutput, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, TInput, TOutput>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, TInput, TOutput>>, IGradientComputable<T, TInput, TOutput>, IJitCompilable<T>
Type Parameters
TThe numeric type used for calculations.
TInputThe input data type.
TOutputThe output data type.
- Inheritance
-
AutoMLModelBase<T, TInput, TOutput>SupervisedAutoMLModelBase<T, TInput, TOutput>BuiltInSupervisedAutoMLModelBase<T, TInput, TOutput>EvolutionaryAutoML<T, TInput, TOutput>
- Implements
-
IAutoMLModel<T, TInput, TOutput>IFullModel<T, TInput, TOutput>IModel<TInput, TOutput, ModelMetadata<T>>IParameterizable<T, TInput, TOutput>ICloneable<IFullModel<T, TInput, TOutput>>IGradientComputable<T, TInput, TOutput>
- Inherited Members
- Extension Methods
Remarks
This strategy treats each trial configuration as an "individual" and iteratively improves by: - selecting strong prior trials as parents - combining their settings (crossover) - randomly tweaking some settings (mutation)
For Beginners: This is like natural selection: keep the best settings, mix them, and make small random changes to discover even better settings over time.
Constructors
EvolutionaryAutoML(IModelEvaluator<T, TInput, TOutput>?, Random?)
public EvolutionaryAutoML(IModelEvaluator<T, TInput, TOutput>? modelEvaluator = null, Random? random = null)
Parameters
modelEvaluatorIModelEvaluator<T, TInput, TOutput>randomRandom
Methods
CreateInstanceForCopy()
Factory method for creating a new instance for deep copy. Derived classes must implement this to return a new instance of themselves. This ensures each copy has its own collections and lock object.
protected override AutoMLModelBase<T, TInput, TOutput> CreateInstanceForCopy()
Returns
- AutoMLModelBase<T, TInput, TOutput>
A fresh instance of the derived class with default parameters
Remarks
When implementing this method, derived classes should create a fresh instance with default parameters, and should not attempt to preserve runtime or initialization state from the original instance. The deep copy logic will transfer relevant state (trial history, search space, etc.) after construction.
SearchAsync(TInput, TOutput, TInput, TOutput, TimeSpan, CancellationToken)
Searches for the best model configuration
public override Task<IFullModel<T, TInput, TOutput>> SearchAsync(TInput inputs, TOutput targets, TInput validationInputs, TOutput validationTargets, TimeSpan timeLimit, CancellationToken cancellationToken = default)
Parameters
inputsTInputtargetsTOutputvalidationInputsTInputvalidationTargetsTOutputtimeLimitTimeSpancancellationTokenCancellationToken
Returns
- Task<IFullModel<T, TInput, TOutput>>
SuggestNextTrialAsync()
Suggests the next hyperparameters to try
public override Task<Dictionary<string, object>> SuggestNextTrialAsync()