AiDotNet
The comprehensive .NET machine learning library
AiDotNet provides everything you need to build, train, and deploy machine learning models in .NET applications.
Quick Navigation
| Section | Description |
|---|---|
| Getting Started | Installation and first steps |
| Tutorials | Step-by-step learning guides |
| API Reference | Complete API documentation |
| Examples | Code examples and samples |
Features
- Neural Networks: Dense, CNN, RNN, LSTM, Transformer architectures
- Classical ML: Classification, Regression, Clustering, Dimensionality Reduction
- Computer Vision: Image classification, object detection, segmentation
- NLP: Text classification, embeddings, RAG pipelines
- Audio: Speech recognition (Whisper), TTS, speaker diarization
- Time Series: Forecasting, anomaly detection
- GPU Acceleration: CUDA, OpenCL, Metal support
- Cross-Platform: Windows, Linux, macOS
Installation
dotnet add package AiDotNet
Quick Example
using AiDotNet;
using AiDotNet.Classification;
// Train a classifier
var result = await new AiModelBuilder<double, Matrix<double>, Vector<double>>()
.ConfigureModel(new RandomForestClassifier<double>(nEstimators: 100))
.ConfigurePreprocessing()
.ConfigureCrossValidation(new KFoldCrossValidator<double>(k: 5))
.ConfigureDataLoader(new InMemoryDataLoader<double, Matrix<double>, Vector<double>>(features, labels))
.BuildAsync();
// Make predictions
var prediction = result.Predict(newSample);
Try It Online
Check out the Interactive Playground to experiment with AiDotNet directly in your browser.