Table of Contents

Class GDAS<T>

Namespace
AiDotNet.AutoML.NAS
Assembly
AiDotNet.dll

Gradient-based Differentiable Architecture Search with Gumbel-Softmax sampling. GDAS uses Gumbel-Softmax to make the architecture search fully differentiable while maintaining discrete selection during forward pass.

Reference: "Searching for A Robust Neural Architecture in Four GPU Hours" (CVPR 2019)

public class GDAS<T> : NasAutoMLModelBase<T>, IAutoMLModel<T, Tensor<T>, Tensor<T>>, IFullModel<T, Tensor<T>, Tensor<T>>, IModel<Tensor<T>, Tensor<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Tensor<T>, Tensor<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Tensor<T>, Tensor<T>>>, IGradientComputable<T, Tensor<T>, Tensor<T>>, IJitCompilable<T>

Type Parameters

T

The numeric type for calculations

Inheritance
AutoMLModelBase<T, Tensor<T>, Tensor<T>>
GDAS<T>
Implements
IAutoMLModel<T, Tensor<T>, Tensor<T>>
IFullModel<T, Tensor<T>, Tensor<T>>
IModel<Tensor<T>, Tensor<T>, ModelMetadata<T>>
IParameterizable<T, Tensor<T>, Tensor<T>>
ICloneable<IFullModel<T, Tensor<T>, Tensor<T>>>
IGradientComputable<T, Tensor<T>, Tensor<T>>
Inherited Members
Extension Methods

Constructors

GDAS(SearchSpaceBase<T>, int, double, double)

public GDAS(SearchSpaceBase<T> searchSpace, int numNodes = 4, double initialTemperature = 5, double finalTemperature = 0.1)

Parameters

searchSpace SearchSpaceBase<T>
numNodes int
initialTemperature double
finalTemperature double

Properties

NasNumNodes

Gets the number of nodes to search over.

protected override int NasNumNodes { get; }

Property Value

int

NasSearchSpace

Gets the NAS search space.

protected override SearchSpaceBase<T> NasSearchSpace { get; }

Property Value

SearchSpaceBase<T>

NumOps

Gets the numeric operations provider for T.

protected override INumericOperations<T> NumOps { get; }

Property Value

INumericOperations<T>

Methods

AnnealTemperature(int, int)

Anneals the Gumbel-Softmax temperature during training

public void AnnealTemperature(int currentEpoch, int maxEpochs)

Parameters

currentEpoch int
maxEpochs int

CreateInstanceForCopy()

Factory method for creating a new instance for deep copy. Derived classes must implement this to return a new instance of themselves. This ensures each copy has its own collections and lock object.

protected override AutoMLModelBase<T, Tensor<T>, Tensor<T>> CreateInstanceForCopy()

Returns

AutoMLModelBase<T, Tensor<T>, Tensor<T>>

A fresh instance of the derived class with default parameters

Remarks

When implementing this method, derived classes should create a fresh instance with default parameters, and should not attempt to preserve runtime or initialization state from the original instance. The deep copy logic will transfer relevant state (trial history, search space, etc.) after construction.

DeriveArchitecture()

Derives the discrete architecture by selecting the operation with highest weight

public Architecture<T> DeriveArchitecture()

Returns

Architecture<T>

GetArchitectureGradients()

Gets architecture gradients

public List<Matrix<T>> GetArchitectureGradients()

Returns

List<Matrix<T>>

GetArchitectureParameters()

Gets architecture parameters for optimization

public List<Matrix<T>> GetArchitectureParameters()

Returns

List<Matrix<T>>

GetTemperature()

Gets current temperature

public T GetTemperature()

Returns

T

GumbelSoftmax(Matrix<T>, bool)

Applies Gumbel-Softmax sampling to architecture parameters. This makes the discrete sampling operation differentiable.

public Matrix<T> GumbelSoftmax(Matrix<T> alpha, bool hard = false)

Parameters

alpha Matrix<T>
hard bool

Returns

Matrix<T>

SearchArchitecture(Tensor<T>, Tensor<T>, Tensor<T>, Tensor<T>, TimeSpan, CancellationToken)

Performs algorithm-specific architecture search.

protected override Architecture<T> SearchArchitecture(Tensor<T> inputs, Tensor<T> targets, Tensor<T> validationInputs, Tensor<T> validationTargets, TimeSpan timeLimit, CancellationToken cancellationToken)

Parameters

inputs Tensor<T>
targets Tensor<T>
validationInputs Tensor<T>
validationTargets Tensor<T>
timeLimit TimeSpan
cancellationToken CancellationToken

Returns

Architecture<T>