Class RandomSearchAutoML<T, TInput, TOutput>
AutoML implementation that uses random search over candidate model types and hyperparameters.
public class RandomSearchAutoML<T, TInput, TOutput> : BuiltInSupervisedAutoMLModelBase<T, TInput, TOutput>, IAutoMLModel<T, TInput, TOutput>, IFullModel<T, TInput, TOutput>, IModel<TInput, TOutput, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, TInput, TOutput>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, TInput, TOutput>>, IGradientComputable<T, TInput, TOutput>, IJitCompilable<T>
Type Parameters
TThe numeric type used for calculations.
TInputThe input data type.
TOutputThe output data type.
- Inheritance
-
AutoMLModelBase<T, TInput, TOutput>SupervisedAutoMLModelBase<T, TInput, TOutput>BuiltInSupervisedAutoMLModelBase<T, TInput, TOutput>RandomSearchAutoML<T, TInput, TOutput>
- Implements
-
IAutoMLModel<T, TInput, TOutput>IFullModel<T, TInput, TOutput>IModel<TInput, TOutput, ModelMetadata<T>>IParameterizable<T, TInput, TOutput>ICloneable<IFullModel<T, TInput, TOutput>>IGradientComputable<T, TInput, TOutput>
- Inherited Members
- Extension Methods
Remarks
Random search is a strong baseline for AutoML. It is simple, parallelizable, and often competitive with more complex search strategies for a given compute budget.
For Beginners: This AutoML strategy works like this:
- Pick a model type at random (for example, Random Forest or Logistic Regression).
- Pick a set of settings at random (for example, number of trees).
- Train the model and score it on validation data.
- Repeat and keep the best result.
Constructors
RandomSearchAutoML(IModelEvaluator<T, TInput, TOutput>?, Random?)
public RandomSearchAutoML(IModelEvaluator<T, TInput, TOutput>? modelEvaluator = null, Random? random = null)
Parameters
modelEvaluatorIModelEvaluator<T, TInput, TOutput>randomRandom
Methods
CreateInstanceForCopy()
Factory method for creating a new instance for deep copy. Derived classes must implement this to return a new instance of themselves. This ensures each copy has its own collections and lock object.
protected override AutoMLModelBase<T, TInput, TOutput> CreateInstanceForCopy()
Returns
- AutoMLModelBase<T, TInput, TOutput>
A fresh instance of the derived class with default parameters
Remarks
When implementing this method, derived classes should create a fresh instance with default parameters, and should not attempt to preserve runtime or initialization state from the original instance. The deep copy logic will transfer relevant state (trial history, search space, etc.) after construction.
SearchAsync(TInput, TOutput, TInput, TOutput, TimeSpan, CancellationToken)
Searches for the best model configuration
public override Task<IFullModel<T, TInput, TOutput>> SearchAsync(TInput inputs, TOutput targets, TInput validationInputs, TOutput validationTargets, TimeSpan timeLimit, CancellationToken cancellationToken = default)
Parameters
inputsTInputtargetsTOutputvalidationInputsTInputvalidationTargetsTOutputtimeLimitTimeSpancancellationTokenCancellationToken
Returns
- Task<IFullModel<T, TInput, TOutput>>
SuggestNextTrialAsync()
Suggests the next hyperparameters to try
public override Task<Dictionary<string, object>> SuggestNextTrialAsync()