Table of Contents

Class NeuralNetworkDerivatives<T>

Namespace
AiDotNet.Autodiff
Assembly
AiDotNet.dll

Provides first- and second-order derivatives for neural networks with safe fallbacks.

public static class NeuralNetworkDerivatives<T>

Type Parameters

T

The numeric type used for calculations.

Inheritance
NeuralNetworkDerivatives<T>
Inherited Members

Methods

ComputeDerivatives(NeuralNetworkBase<T>, T[], int)

Computes first and second derivatives for a feedforward network at a single input point. Falls back to finite differences when analytic derivatives are unavailable.

public static PDEDerivatives<T> ComputeDerivatives(NeuralNetworkBase<T> network, T[] inputs, int outputDim)

Parameters

network NeuralNetworkBase<T>
inputs T[]
outputDim int

Returns

PDEDerivatives<T>

ComputeGradient(NeuralNetworkBase<T>, T[], int)

Computes first derivatives (Jacobian) for a network output with autodiff-first fallback.

public static T[,] ComputeGradient(NeuralNetworkBase<T> network, T[] inputs, int outputDim)

Parameters

network NeuralNetworkBase<T>
inputs T[]
outputDim int

Returns

T[,]

ComputeHessian(NeuralNetworkBase<T>, T[], int)

Computes the Hessian for a scalar output index.

public static T[,] ComputeHessian(NeuralNetworkBase<T> network, T[] inputs, int outputIndex = 0)

Parameters

network NeuralNetworkBase<T>
inputs T[]
outputIndex int

Returns

T[,]