Class NeuralNetworkDerivatives<T>
Provides first- and second-order derivatives for neural networks with safe fallbacks.
public static class NeuralNetworkDerivatives<T>
Type Parameters
TThe numeric type used for calculations.
- Inheritance
-
NeuralNetworkDerivatives<T>
- Inherited Members
Methods
ComputeDerivatives(NeuralNetworkBase<T>, T[], int)
Computes first and second derivatives for a feedforward network at a single input point. Falls back to finite differences when analytic derivatives are unavailable.
public static PDEDerivatives<T> ComputeDerivatives(NeuralNetworkBase<T> network, T[] inputs, int outputDim)
Parameters
networkNeuralNetworkBase<T>inputsT[]outputDimint
Returns
ComputeGradient(NeuralNetworkBase<T>, T[], int)
Computes first derivatives (Jacobian) for a network output with autodiff-first fallback.
public static T[,] ComputeGradient(NeuralNetworkBase<T> network, T[] inputs, int outputDim)
Parameters
networkNeuralNetworkBase<T>inputsT[]outputDimint
Returns
- T[,]
ComputeHessian(NeuralNetworkBase<T>, T[], int)
Computes the Hessian for a scalar output index.
public static T[,] ComputeHessian(NeuralNetworkBase<T> network, T[] inputs, int outputIndex = 0)
Parameters
networkNeuralNetworkBase<T>inputsT[]outputIndexint
Returns
- T[,]