Class GradientBoostingClassifier<T>
- Namespace
- AiDotNet.Classification.Ensemble
- Assembly
- AiDotNet.dll
Gradient Boosting classifier that builds trees sequentially to correct errors.
public class GradientBoostingClassifier<T> : EnsembleClassifierBase<T>, ITreeBasedClassifier<T>, IProbabilisticClassifier<T>, IClassifier<T>, IFullModel<T, Matrix<T>, Vector<T>>, IModel<Matrix<T>, Vector<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Matrix<T>, Vector<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Matrix<T>, Vector<T>>>, IGradientComputable<T, Matrix<T>, Vector<T>>, IJitCompilable<T>
Type Parameters
TThe numeric data type used for calculations (e.g., float, double).
- Inheritance
-
GradientBoostingClassifier<T>
- Implements
-
IClassifier<T>
- Inherited Members
- Extension Methods
Remarks
Gradient Boosting builds an additive model in a forward stage-wise fashion. At each stage, a regression tree is fit on the negative gradient of the loss function. For classification, this uses log loss (deviance) or exponential loss.
For Beginners: Gradient Boosting is one of the most powerful machine learning algorithms:
How it works:
- Start with an initial prediction
- Calculate how wrong we are
- Train a tree to predict our mistakes
- Add a fraction of this tree's predictions
- Repeat, each time correcting remaining errors
Key insight: Each tree fixes what previous trees got wrong!
Tips for best results:
- Use lower learning_rate with more n_estimators
- Keep max_depth small (3-5) unlike Random Forest
- Consider subsample less than 1.0 for regularization
Constructors
GradientBoostingClassifier(GradientBoostingClassifierOptions<T>?, IRegularization<T, Matrix<T>, Vector<T>>?)
Initializes a new instance of the GradientBoostingClassifier class.
public GradientBoostingClassifier(GradientBoostingClassifierOptions<T>? options = null, IRegularization<T, Matrix<T>, Vector<T>>? regularization = null)
Parameters
optionsGradientBoostingClassifierOptions<T>Configuration options for Gradient Boosting.
regularizationIRegularization<T, Matrix<T>, Vector<T>>Optional regularization strategy.
Properties
LeafCount
Gets the number of leaf nodes in the tree.
public int LeafCount { get; }
Property Value
- int
The count of terminal nodes (leaves) in the trained tree. Returns 0 if the model has not been trained.
MaxDepth
Gets the maximum depth of the tree.
public int MaxDepth { get; }
Property Value
- int
The maximum depth reached during training, or the configured maximum depth.
NodeCount
Gets the number of internal (decision) nodes in the tree.
public int NodeCount { get; }
Property Value
- int
The count of non-terminal nodes that make decisions. Returns 0 if the model has not been trained.
Options
Gets the Gradient Boosting specific options.
protected GradientBoostingClassifierOptions<T> Options { get; }
Property Value
Methods
Clone()
Creates a clone of the classifier model.
public override IFullModel<T, Matrix<T>, Vector<T>> Clone()
Returns
- IFullModel<T, Matrix<T>, Vector<T>>
A new instance of the model with the same parameters and options.
CreateNewInstance()
Creates a new instance of the same type as this classifier.
protected override IFullModel<T, Matrix<T>, Vector<T>> CreateNewInstance()
Returns
- IFullModel<T, Matrix<T>, Vector<T>>
A new instance of the same classifier type.
GetModelMetadata()
Gets metadata about the model.
public override ModelMetadata<T> GetModelMetadata()
Returns
- ModelMetadata<T>
A ModelMetadata object containing information about the model.
Remarks
This method returns metadata about the model, including its type, feature count, complexity, description, and additional information specific to classification.
For Beginners: Model metadata provides information about the model itself, rather than the predictions it makes. This includes details about the model's structure (like how many features it uses) and characteristics (like how many classes it can predict). This information can be useful for understanding and comparing different models.
GetModelType()
Returns the model type identifier for this classifier.
protected override ModelType GetModelType()
Returns
Predict(Matrix<T>)
Predicts class labels for the given input data by taking the argmax of probabilities.
public override Vector<T> Predict(Matrix<T> input)
Parameters
inputMatrix<T>The input features matrix where each row is an example and each column is a feature.
Returns
- Vector<T>
A vector of predicted class indices for each input example.
Remarks
This implementation uses the argmax of the probability distribution to determine the predicted class. For binary classification with a custom decision threshold, you may want to use PredictProbabilities() directly and apply your own threshold.
For Beginners: This method picks the class with the highest probability for each sample.
For example, if the probabilities are [0.1, 0.7, 0.2] for classes [A, B, C], this method returns class B (index 1) because it has the highest probability (0.7).
PredictProbabilities(Matrix<T>)
Aggregates predictions from all estimators in the ensemble.
public override Matrix<T> PredictProbabilities(Matrix<T> input)
Parameters
inputMatrix<T>The input features matrix.
Returns
- Matrix<T>
A matrix of aggregated class probabilities.
Remarks
Default implementation averages the probability predictions from all estimators. Derived classes may override this for different aggregation strategies.
Train(Matrix<T>, Vector<T>)
Trains the Gradient Boosting classifier on the provided data.
public override void Train(Matrix<T> x, Vector<T> y)
Parameters
xMatrix<T>yVector<T>