Class BaggingClassifier<T>
- Namespace
- AiDotNet.Classification.Meta
- Assembly
- AiDotNet.dll
Bagging (Bootstrap Aggregating) classifier.
public class BaggingClassifier<T> : MetaClassifierBase<T>, IProbabilisticClassifier<T>, IClassifier<T>, IFullModel<T, Matrix<T>, Vector<T>>, IModel<Matrix<T>, Vector<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Matrix<T>, Vector<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Matrix<T>, Vector<T>>>, IGradientComputable<T, Matrix<T>, Vector<T>>, IJitCompilable<T>
Type Parameters
TThe numeric data type used for calculations.
- Inheritance
-
BaggingClassifier<T>
- Implements
-
IClassifier<T>
- Inherited Members
- Extension Methods
Remarks
Bagging trains multiple classifiers on bootstrap samples of the training data and combines their predictions through voting.
For Beginners: Bagging is a technique to reduce overfitting:
- Create N bootstrap samples (random samples with replacement)
- Train one classifier on each sample
- For prediction, each classifier votes
- Final prediction is the majority vote
Benefits:
- Reduces variance (less overfitting)
- Works well with high-variance classifiers like decision trees
- Easily parallelizable
When to use:
- When your base classifier tends to overfit
- When you want more robust predictions
- As a simpler alternative to boosting
Constructors
BaggingClassifier(Func<IClassifier<T>>, BaggingClassifierOptions<T>?, IRegularization<T, Matrix<T>, Vector<T>>?)
Initializes a new instance of the BaggingClassifier class.
public BaggingClassifier(Func<IClassifier<T>> estimatorFactory, BaggingClassifierOptions<T>? options = null, IRegularization<T, Matrix<T>, Vector<T>>? regularization = null)
Parameters
estimatorFactoryFunc<IClassifier<T>>Factory function to create base classifiers.
optionsBaggingClassifierOptions<T>Configuration options for the classifier.
regularizationIRegularization<T, Matrix<T>, Vector<T>>Optional regularization strategy.
Properties
Options
Gets the bagging-specific options.
protected BaggingClassifierOptions<T> Options { get; }
Property Value
Methods
Clone()
Creates a clone of the classifier model.
public override IFullModel<T, Matrix<T>, Vector<T>> Clone()
Returns
- IFullModel<T, Matrix<T>, Vector<T>>
A new instance of the model with the same parameters and options.
CreateNewInstance()
Creates a new instance of the same type as this classifier.
protected override IFullModel<T, Matrix<T>, Vector<T>> CreateNewInstance()
Returns
- IFullModel<T, Matrix<T>, Vector<T>>
A new instance of the same classifier type.
GetModelMetadata()
Gets metadata about the model.
public override ModelMetadata<T> GetModelMetadata()
Returns
- ModelMetadata<T>
A ModelMetadata object containing information about the model.
Remarks
This method returns metadata about the model, including its type, feature count, complexity, description, and additional information specific to classification.
For Beginners: Model metadata provides information about the model itself, rather than the predictions it makes. This includes details about the model's structure (like how many features it uses) and characteristics (like how many classes it can predict). This information can be useful for understanding and comparing different models.
GetModelType()
Returns the model type identifier for this classifier.
protected override ModelType GetModelType()
Returns
Predict(Matrix<T>)
Predicts class labels for the given input data by taking the argmax of probabilities.
public override Vector<T> Predict(Matrix<T> input)
Parameters
inputMatrix<T>The input features matrix where each row is an example and each column is a feature.
Returns
- Vector<T>
A vector of predicted class indices for each input example.
Remarks
This implementation uses the argmax of the probability distribution to determine the predicted class. For binary classification with a custom decision threshold, you may want to use PredictProbabilities() directly and apply your own threshold.
For Beginners: This method picks the class with the highest probability for each sample.
For example, if the probabilities are [0.1, 0.7, 0.2] for classes [A, B, C], this method returns class B (index 1) because it has the highest probability (0.7).
PredictLogProbabilities(Matrix<T>)
Predicts log-probabilities for each class.
public override Matrix<T> PredictLogProbabilities(Matrix<T> input)
Parameters
inputMatrix<T>The input features matrix where each row is a sample and each column is a feature.
Returns
- Matrix<T>
A matrix where each row corresponds to an input sample and each column corresponds to a class. The values are the natural logarithm of the class probabilities.
Remarks
The default implementation computes log(PredictProbabilities(input)). Subclasses that compute log-probabilities directly (like Naive Bayes) should override this method for better numerical stability.
For Beginners: Log-probabilities are probabilities transformed by the natural logarithm. They're useful for numerical stability when working with very small probabilities.
For example:
- Probability 0.9 → Log-probability -0.105
- Probability 0.1 → Log-probability -2.303
- Probability 0.001 → Log-probability -6.908
Log-probabilities are always negative (since probabilities are between 0 and 1). Higher (less negative) values mean higher probability.
PredictProbabilities(Matrix<T>)
Predicts class probabilities for each sample in the input.
public override Matrix<T> PredictProbabilities(Matrix<T> input)
Parameters
inputMatrix<T>The input features matrix where each row is a sample and each column is a feature.
Returns
- Matrix<T>
A matrix where each row corresponds to an input sample and each column corresponds to a class. The values represent the probability of the sample belonging to each class.
Remarks
This abstract method must be implemented by derived classes to compute class probabilities. The output matrix should have shape [num_samples, num_classes], and each row should sum to 1.0.
For Beginners: This method computes the probability of each sample belonging to each class. Each row in the output represents one sample, and each column represents one class. The values in each row sum to 1.0 (100% total probability).
Train(Matrix<T>, Vector<T>)
Trains the Bagging classifier on the provided data.
public override void Train(Matrix<T> x, Vector<T> y)
Parameters
xMatrix<T>yVector<T>