Class ComplementNaiveBayes<T>
- Namespace
- AiDotNet.Classification.NaiveBayes
- Assembly
- AiDotNet.dll
Complement Naive Bayes classifier designed for imbalanced datasets.
public class ComplementNaiveBayes<T> : NaiveBayesBase<T>, IProbabilisticClassifier<T>, IClassifier<T>, IFullModel<T, Matrix<T>, Vector<T>>, IModel<Matrix<T>, Vector<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Matrix<T>, Vector<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Matrix<T>, Vector<T>>>, IGradientComputable<T, Matrix<T>, Vector<T>>, IJitCompilable<T>
Type Parameters
TThe numeric data type used for calculations (e.g., float, double).
- Inheritance
-
ComplementNaiveBayes<T>
- Implements
-
IClassifier<T>
- Inherited Members
- Extension Methods
Remarks
Complement Naive Bayes (CNB) addresses some of the drawbacks of the standard Multinomial Naive Bayes, particularly on imbalanced datasets. Instead of computing P(feature|class), it computes P(feature|NOT class).
For Beginners: Think of it this way: instead of asking "how likely is this word in spam?", CNB asks "how unlikely is this word in NOT-spam?"
This helps when:
- One class has many more examples than others
- Features are not uniformly distributed across classes
- Standard Multinomial NB is biased toward the majority class
Example: In text classification with 95% non-spam and 5% spam, standard NB might always predict non-spam. CNB corrects this.
CNB is particularly effective for:
- Text classification with imbalanced classes
- Sentiment analysis
- Topic categorization
Constructors
ComplementNaiveBayes(NaiveBayesOptions<T>?, IRegularization<T, Matrix<T>, Vector<T>>?, bool)
Initializes a new instance of the ComplementNaiveBayes class.
public ComplementNaiveBayes(NaiveBayesOptions<T>? options = null, IRegularization<T, Matrix<T>, Vector<T>>? regularization = null, bool normalize = true)
Parameters
optionsNaiveBayesOptions<T>Configuration options for the classifier.
regularizationIRegularization<T, Matrix<T>, Vector<T>>Optional regularization strategy.
normalizeboolWhether to normalize feature weights (default true).
Methods
Clone()
Creates a clone of the classifier model.
public override IFullModel<T, Matrix<T>, Vector<T>> Clone()
Returns
- IFullModel<T, Matrix<T>, Vector<T>>
A new instance of the model with the same parameters and options.
ComputeClassParameters(Matrix<T>, Vector<T>)
Computes class-specific parameters for Complement Naive Bayes.
protected override void ComputeClassParameters(Matrix<T> x, Vector<T> y)
Parameters
xMatrix<T>yVector<T>
ComputeLogLikelihood(Vector<T>, int)
Computes the log-likelihood for a sample given a class.
protected override T ComputeLogLikelihood(Vector<T> sample, int classIndex)
Parameters
sampleVector<T>classIndexint
Returns
- T
CreateNewInstance()
Creates a new instance of the same type as this classifier.
protected override IFullModel<T, Matrix<T>, Vector<T>> CreateNewInstance()
Returns
- IFullModel<T, Matrix<T>, Vector<T>>
A new instance of the same classifier type.
GetModelMetadata()
Gets metadata about the model.
public override ModelMetadata<T> GetModelMetadata()
Returns
- ModelMetadata<T>
A ModelMetadata object containing information about the model.
Remarks
This method returns metadata about the model, including its type, feature count, complexity, description, and additional information specific to classification.
For Beginners: Model metadata provides information about the model itself, rather than the predictions it makes. This includes details about the model's structure (like how many features it uses) and characteristics (like how many classes it can predict). This information can be useful for understanding and comparing different models.
GetModelType()
Returns the model type identifier for this classifier.
protected override ModelType GetModelType()