Class UNetNoisePredictor<T>
- Namespace
- AiDotNet.Diffusion.NoisePredictors
- Assembly
- AiDotNet.dll
U-Net architecture for noise prediction in diffusion models.
public class UNetNoisePredictor<T> : NoisePredictorBase<T>, INoisePredictor<T>, IFullModel<T, Tensor<T>, Tensor<T>>, IModel<Tensor<T>, Tensor<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Tensor<T>, Tensor<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Tensor<T>, Tensor<T>>>, IGradientComputable<T, Tensor<T>, Tensor<T>>, IJitCompilable<T>
Type Parameters
TThe numeric type used for calculations.
- Inheritance
-
UNetNoisePredictor<T>
- Implements
- Inherited Members
- Extension Methods
Remarks
The U-Net is the most common architecture for diffusion model noise prediction. It has an encoder-decoder structure with skip connections that help preserve fine-grained details during the denoising process.
For Beginners: Think of U-Net like a funnel: 1. Encoder (going down): Compresses the image, capturing patterns at different scales 2. Middle: Processes the most compressed representation 3. Decoder (going up): Expands back to original size, using skip connections
Skip connections are like "shortcuts" that connect encoder layers directly to decoder layers, helping the network preserve fine details that might otherwise be lost during compression.
This implementation follows the Stable Diffusion architecture with: - Residual blocks with group normalization - Self-attention at lower resolutions - Cross-attention for text conditioning - Time embedding injection via adaptive normalization
Constructors
UNetNoisePredictor(int, int?, int, int[]?, int, int[]?, int, int, ILossFunction<T>?, int?)
Initializes a new instance of the UNetNoisePredictor class with default Stable Diffusion configuration.
public UNetNoisePredictor(int inputChannels = 4, int? outputChannels = null, int baseChannels = 320, int[]? channelMultipliers = null, int numResBlocks = 2, int[]? attentionResolutions = null, int contextDim = 768, int numHeads = 8, ILossFunction<T>? lossFunction = null, int? seed = null)
Parameters
inputChannelsintNumber of input channels (default: 4 for latent diffusion).
outputChannelsint?Number of output channels (default: same as input).
baseChannelsintBase channel count (default: 320 for SD).
channelMultipliersint[]Channel multipliers per level (default: [1, 2, 4, 4]).
numResBlocksintNumber of residual blocks per level (default: 2).
attentionResolutionsint[]Resolution indices for attention (default: [1, 2, 3]).
contextDimintContext dimension for cross-attention (default: 768 for CLIP).
numHeadsintNumber of attention heads (default: 8).
lossFunctionILossFunction<T>Optional loss function (default: MSE).
seedint?Optional random seed for reproducibility.
Properties
BaseChannels
Gets the base channel count used in the network architecture.
public override int BaseChannels { get; }
Property Value
Remarks
This determines the model capacity. Common values: - 320 for Stable Diffusion 1.x and 2.x - 384 for Stable Diffusion XL (base) - 1024 for large DiT models
ContextDimension
Gets the expected context dimension for cross-attention conditioning.
public override int ContextDimension { get; }
Property Value
Remarks
For CLIP-conditioned models, this is typically 768 or 1024. For T5-conditioned models (like SD3), this is typically 2048. Returns 0 if cross-attention is not supported.
InputChannels
Gets the number of input channels the predictor expects.
public override int InputChannels { get; }
Property Value
Remarks
For image models, this is typically: - 4 for latent diffusion models (VAE latent channels) - 3 for pixel-space RGB models - Higher for models with additional conditioning channels
OutputChannels
Gets the number of output channels the predictor produces.
public override int OutputChannels { get; }
Property Value
Remarks
Usually matches InputChannels since we predict noise of the same shape as input. Some architectures may predict additional outputs like variance.
ParameterCount
Gets the number of parameters in the model.
public override int ParameterCount { get; }
Property Value
Remarks
This property returns the total count of trainable parameters in the model. It's useful for understanding model complexity and memory requirements.
SupportsCFG
Gets whether this noise predictor supports classifier-free guidance.
public override bool SupportsCFG { get; }
Property Value
Remarks
Classifier-free guidance allows steering generation toward the conditioning (e.g., text prompt) without a separate classifier. Most modern models support this.
SupportsCrossAttention
Gets whether this noise predictor supports cross-attention conditioning.
public override bool SupportsCrossAttention { get; }
Property Value
Remarks
Cross-attention allows the model to attend to conditioning tokens (like text embeddings). This is how text-to-image models incorporate the prompt.
TimeEmbeddingDim
Gets the dimension of the time/timestep embedding.
public override int TimeEmbeddingDim { get; }
Property Value
Remarks
The timestep is embedded into a high-dimensional vector before being injected into the network. Typical values: 256, 512, 1024.
Methods
Clone()
Creates a deep copy of the noise predictor.
public override INoisePredictor<T> Clone()
Returns
- INoisePredictor<T>
A new instance with the same parameters.
DeepCopy()
Creates a deep copy of this object.
public override IFullModel<T, Tensor<T>, Tensor<T>> DeepCopy()
Returns
- IFullModel<T, Tensor<T>, Tensor<T>>
GetParameters()
Gets the parameters that can be optimized.
public override Vector<T> GetParameters()
Returns
- Vector<T>
PredictNoise(Tensor<T>, int, Tensor<T>?)
Predicts the noise in a noisy sample at a given timestep.
public override Tensor<T> PredictNoise(Tensor<T> noisySample, int timestep, Tensor<T>? conditioning = null)
Parameters
noisySampleTensor<T>The noisy input sample [batch, channels, height, width].
timestepintThe current timestep in the diffusion process.
conditioningTensor<T>Optional conditioning tensor (e.g., text embeddings).
Returns
- Tensor<T>
The predicted noise tensor with the same shape as noisySample.
Remarks
This is the main forward pass of the noise predictor. Given a noisy sample at timestep t, it predicts what noise was added.
For Beginners: This is where the actual denoising happens: 1. The network looks at the noisy image 2. It considers how noisy it should be at this timestep 3. It predicts the noise pattern 4. This prediction is subtracted to get a cleaner image
PredictNoiseWithEmbedding(Tensor<T>, Tensor<T>, Tensor<T>?)
Predicts noise with explicit timestep embedding (for batched different timesteps).
public override Tensor<T> PredictNoiseWithEmbedding(Tensor<T> noisySample, Tensor<T> timeEmbedding, Tensor<T>? conditioning = null)
Parameters
noisySampleTensor<T>The noisy input sample [batch, channels, height, width].
timeEmbeddingTensor<T>Pre-computed timestep embeddings [batch, timeEmbeddingDim].
conditioningTensor<T>Optional conditioning tensor (e.g., text embeddings).
Returns
- Tensor<T>
The predicted noise tensor with the same shape as noisySample.
Remarks
This overload is useful when you want to use different timesteps per sample in a batch, or when you have pre-computed timestep embeddings for efficiency.
SetParameters(Vector<T>)
Sets the model parameters.
public override void SetParameters(Vector<T> parameters)
Parameters
parametersVector<T>The parameter vector to set.
Remarks
This method allows direct modification of the model's internal parameters.
This is useful for optimization algorithms that need to update parameters iteratively.
If the length of parameters does not match ParameterCount,
an ArgumentException should be thrown.
Exceptions
- ArgumentException
Thrown when the length of
parametersdoes not match ParameterCount.