Class VideoUNetPredictor<T>
- Namespace
- AiDotNet.Diffusion.NoisePredictors
- Assembly
- AiDotNet.dll
3D U-Net architecture for video noise prediction in diffusion models.
public class VideoUNetPredictor<T> : NoisePredictorBase<T>, INoisePredictor<T>, IFullModel<T, Tensor<T>, Tensor<T>>, IModel<Tensor<T>, Tensor<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Tensor<T>, Tensor<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Tensor<T>, Tensor<T>>>, IGradientComputable<T, Tensor<T>, Tensor<T>>, IJitCompilable<T>
Type Parameters
TThe numeric type used for calculations.
- Inheritance
-
VideoUNetPredictor<T>
- Implements
- Inherited Members
- Extension Methods
Remarks
The VideoUNetPredictor extends the standard U-Net architecture to handle video data by incorporating 3D convolutions and temporal attention. This is the core noise prediction network used in video diffusion models like Stable Video Diffusion.
For Beginners: While a regular U-Net processes single images, VideoUNet processes sequences of frames as a 3D volume:
Regular U-Net:
- Input: [batch, channels, height, width]
- 2D convolutions across spatial dimensions only
- Each image processed independently
Video U-Net:
- Input: [batch, channels, frames, height, width]
- 3D convolutions across space AND time
- Frames are processed together, understanding motion
Key features:
- Temporal convolutions capture motion patterns
- Temporal attention for long-range frame relationships
- Skip connections across both space and time
- Image conditioning for image-to-video generation
Used in: Stable Video Diffusion, ModelScope, VideoCrafter
Architecture details: - Encoder: 3D ResBlocks with temporal + spatial attention - Middle: Multiple 3D attention blocks - Decoder: 3D ResBlocks with skip connections - Temporal convolutions with kernel size 3 across frames
Constructors
VideoUNetPredictor(int, int?, int, int[]?, int, int[]?, int, int, int, bool, ILossFunction<T>?, int?)
Initializes a new instance of the VideoUNetPredictor class.
public VideoUNetPredictor(int inputChannels = 4, int? outputChannels = null, int baseChannels = 320, int[]? channelMultipliers = null, int numResBlocks = 2, int[]? attentionResolutions = null, int numTemporalLayers = 1, int contextDim = 1024, int numHeads = 8, bool supportsImageConditioning = true, ILossFunction<T>? lossFunction = null, int? seed = null)
Parameters
inputChannelsintNumber of input channels (default: 4 for latent diffusion).
outputChannelsint?Number of output channels (default: same as input).
baseChannelsintBase channel count (default: 320).
channelMultipliersint[]Channel multipliers per level (default: [1, 2, 4, 4]).
numResBlocksintNumber of residual blocks per level (default: 2).
attentionResolutionsint[]Resolution indices for attention (default: [1, 2, 3]).
numTemporalLayersintNumber of temporal transformer layers (default: 1).
contextDimintContext dimension for cross-attention (default: 1024).
numHeadsintNumber of attention heads (default: 8).
supportsImageConditioningboolWhether to support image conditioning (default: true).
lossFunctionILossFunction<T>Optional loss function (default: MSE).
seedint?Optional random seed for reproducibility.
Properties
BaseChannels
Gets the base channel count used in the network architecture.
public override int BaseChannels { get; }
Property Value
Remarks
This determines the model capacity. Common values: - 320 for Stable Diffusion 1.x and 2.x - 384 for Stable Diffusion XL (base) - 1024 for large DiT models
ContextDimension
Gets the expected context dimension for cross-attention conditioning.
public override int ContextDimension { get; }
Property Value
Remarks
For CLIP-conditioned models, this is typically 768 or 1024. For T5-conditioned models (like SD3), this is typically 2048. Returns 0 if cross-attention is not supported.
InputChannels
Gets the number of input channels the predictor expects.
public override int InputChannels { get; }
Property Value
Remarks
For image models, this is typically: - 4 for latent diffusion models (VAE latent channels) - 3 for pixel-space RGB models - Higher for models with additional conditioning channels
NumTemporalLayers
Gets the number of temporal transformer layers.
public int NumTemporalLayers { get; }
Property Value
OutputChannels
Gets the number of output channels the predictor produces.
public override int OutputChannels { get; }
Property Value
Remarks
Usually matches InputChannels since we predict noise of the same shape as input. Some architectures may predict additional outputs like variance.
ParameterCount
Gets the number of parameters in the model.
public override int ParameterCount { get; }
Property Value
Remarks
This property returns the total count of trainable parameters in the model. It's useful for understanding model complexity and memory requirements.
SupportsCFG
Gets whether this noise predictor supports classifier-free guidance.
public override bool SupportsCFG { get; }
Property Value
Remarks
Classifier-free guidance allows steering generation toward the conditioning (e.g., text prompt) without a separate classifier. Most modern models support this.
SupportsCrossAttention
Gets whether this noise predictor supports cross-attention conditioning.
public override bool SupportsCrossAttention { get; }
Property Value
Remarks
Cross-attention allows the model to attend to conditioning tokens (like text embeddings). This is how text-to-image models incorporate the prompt.
SupportsImageConditioning
Gets whether this predictor supports image conditioning for image-to-video.
public bool SupportsImageConditioning { get; }
Property Value
TimeEmbeddingDim
Gets the dimension of the time/timestep embedding.
public override int TimeEmbeddingDim { get; }
Property Value
Remarks
The timestep is embedded into a high-dimensional vector before being injected into the network. Typical values: 256, 512, 1024.
Methods
Clone()
Creates a deep copy of the noise predictor.
public override INoisePredictor<T> Clone()
Returns
- INoisePredictor<T>
A new instance with the same parameters.
DeepCopy()
Creates a deep copy of this object.
public override IFullModel<T, Tensor<T>, Tensor<T>> DeepCopy()
Returns
- IFullModel<T, Tensor<T>, Tensor<T>>
GetParameters()
Gets the parameters that can be optimized.
public override Vector<T> GetParameters()
Returns
- Vector<T>
PredictNoise(Tensor<T>, int, Tensor<T>?)
Predicts the noise in a noisy sample at a given timestep.
public override Tensor<T> PredictNoise(Tensor<T> noisySample, int timestep, Tensor<T>? conditioning = null)
Parameters
noisySampleTensor<T>The noisy input sample [batch, channels, height, width].
timestepintThe current timestep in the diffusion process.
conditioningTensor<T>Optional conditioning tensor (e.g., text embeddings).
Returns
- Tensor<T>
The predicted noise tensor with the same shape as noisySample.
Remarks
This is the main forward pass of the noise predictor. Given a noisy sample at timestep t, it predicts what noise was added.
For Beginners: This is where the actual denoising happens: 1. The network looks at the noisy image 2. It considers how noisy it should be at this timestep 3. It predicts the noise pattern 4. This prediction is subtracted to get a cleaner image
PredictNoiseWithEmbedding(Tensor<T>, Tensor<T>, Tensor<T>?)
Predicts noise with explicit timestep embedding (for batched different timesteps).
public override Tensor<T> PredictNoiseWithEmbedding(Tensor<T> noisySample, Tensor<T> timeEmbedding, Tensor<T>? conditioning = null)
Parameters
noisySampleTensor<T>The noisy input sample [batch, channels, height, width].
timeEmbeddingTensor<T>Pre-computed timestep embeddings [batch, timeEmbeddingDim].
conditioningTensor<T>Optional conditioning tensor (e.g., text embeddings).
Returns
- Tensor<T>
The predicted noise tensor with the same shape as noisySample.
Remarks
This overload is useful when you want to use different timesteps per sample in a batch, or when you have pre-computed timestep embeddings for efficiency.
PredictNoiseWithImageCondition(Tensor<T>, int, Tensor<T>, Tensor<T>?)
Predicts noise for image-to-video generation with image conditioning.
public Tensor<T> PredictNoiseWithImageCondition(Tensor<T> noisySample, int timestep, Tensor<T> imageCondition, Tensor<T>? textConditioning = null)
Parameters
noisySampleTensor<T>The noisy video latent.
timestepintThe current timestep.
imageConditionTensor<T>The conditioning image (first frame).
textConditioningTensor<T>Optional text conditioning.
Returns
- Tensor<T>
The predicted noise.
SetParameters(Vector<T>)
Sets the model parameters.
public override void SetParameters(Vector<T> parameters)
Parameters
parametersVector<T>The parameter vector to set.
Remarks
This method allows direct modification of the model's internal parameters.
This is useful for optimization algorithms that need to update parameters iteratively.
If the length of parameters does not match ParameterCount,
an ArgumentException should be thrown.
Exceptions
- ArgumentException
Thrown when the length of
parametersdoes not match ParameterCount.