Table of Contents

Class TemporalVAE<T>

Namespace
AiDotNet.Diffusion.VAE
Assembly
AiDotNet.dll

Temporal-aware Variational Autoencoder for video diffusion models.

public class TemporalVAE<T> : VAEModelBase<T>, IVAEModel<T>, IFullModel<T, Tensor<T>, Tensor<T>>, IModel<Tensor<T>, Tensor<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Tensor<T>, Tensor<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Tensor<T>, Tensor<T>>>, IGradientComputable<T, Tensor<T>, Tensor<T>>, IJitCompilable<T>

Type Parameters

T

The numeric type used for calculations.

Inheritance
TemporalVAE<T>
Implements
IFullModel<T, Tensor<T>, Tensor<T>>
IModel<Tensor<T>, Tensor<T>, ModelMetadata<T>>
IParameterizable<T, Tensor<T>, Tensor<T>>
ICloneable<IFullModel<T, Tensor<T>, Tensor<T>>>
IGradientComputable<T, Tensor<T>, Tensor<T>>
Inherited Members
Extension Methods

Remarks

The TemporalVAE extends the standard VAE to handle video data by incorporating temporal awareness into the encoding and decoding process. This helps maintain temporal consistency across frames when used in video diffusion models.

For Beginners: While a standard VAE processes each frame independently, TemporalVAE considers relationships between consecutive frames:

Standard VAE approach (per-frame):

  • Frame 1 -> Latent 1 (no knowledge of other frames)
  • Frame 2 -> Latent 2 (no knowledge of other frames)
  • Result: Possible flickering/inconsistency between frames

TemporalVAE approach:

  • Frames 1,2,3,... -> Encode with temporal awareness
  • Latent knows about neighboring frames
  • Result: Smoother, more consistent video

Key features:

  • 3D convolutions that span across time dimension
  • Temporal attention for long-range frame relationships
  • Optional causal mode for streaming/autoregressive generation

Used in: Stable Video Diffusion, Video LDM, and similar models.

Architecture details: - Input: [batch, channels, frames, height, width] video tensor - Encoder: 2D spatial blocks + 1D temporal blocks - Latent: [batch, latentChannels, frames, height/8, width/8] - Decoder: 2D spatial blocks + 1D temporal blocks - Output: [batch, channels, frames, height, width] reconstructed video

Constructors

TemporalVAE(int, int, int, int[]?, int, int, bool, double?, ILossFunction<T>?, int?)

Initializes a new instance of the TemporalVAE class.

public TemporalVAE(int inputChannels = 3, int latentChannels = 4, int baseChannels = 128, int[]? channelMultipliers = null, int numTemporalLayers = 1, int temporalKernelSize = 3, bool causalMode = false, double? latentScaleFactor = null, ILossFunction<T>? lossFunction = null, int? seed = null)

Parameters

inputChannels int

Number of input image channels (default: 3 for RGB).

latentChannels int

Number of latent channels (default: 4).

baseChannels int

Base channel count (default: 128).

channelMultipliers int[]

Channel multipliers per level (default: [1, 2, 4, 4]).

numTemporalLayers int

Number of temporal layers per spatial block (default: 1).

temporalKernelSize int

Kernel size for temporal convolutions (default: 3).

causalMode bool

Whether to use causal convolutions (default: false).

latentScaleFactor double?

Scale factor for latents (default: 0.18215).

lossFunction ILossFunction<T>

Optional loss function (default: MSE).

seed int?

Optional random seed for reproducibility.

Properties

DownsampleFactor

Gets the spatial downsampling factor.

public override int DownsampleFactor { get; }

Property Value

int

Remarks

The factor by which the VAE reduces spatial dimensions. Stable Diffusion uses 8x downsampling, so a 512x512 image becomes 64x64 latents.

InputChannels

Gets the number of input channels (image channels).

public override int InputChannels { get; }

Property Value

int

Remarks

Typically 3 for RGB images. Could be 1 for grayscale or 4 for RGBA.

IsCausal

Gets whether this VAE uses causal convolutions.

public bool IsCausal { get; }

Property Value

bool

LatentChannels

Gets the number of latent channels.

public override int LatentChannels { get; }

Property Value

int

Remarks

Standard Stable Diffusion VAEs use 4 latent channels. Some newer VAEs may use different values (e.g., 16 for certain architectures).

LatentScaleFactor

Gets the scale factor for latent values.

public override double LatentScaleFactor { get; }

Property Value

double

Remarks

A normalization factor applied to latent values. For Stable Diffusion, this is 0.18215, which normalizes the latent distribution to unit variance.

ParameterCount

Gets the number of parameters in the model.

public override int ParameterCount { get; }

Property Value

int

Remarks

This property returns the total count of trainable parameters in the model. It's useful for understanding model complexity and memory requirements.

SupportsSlicing

Gets whether this VAE uses slicing for sequential processing.

public override bool SupportsSlicing { get; }

Property Value

bool

Remarks

Slicing processes the batch one sample at a time to reduce memory. Trades speed for memory efficiency.

SupportsTiling

Gets whether this VAE uses tiling for memory-efficient encoding/decoding.

public override bool SupportsTiling { get; }

Property Value

bool

Remarks

Tiling processes the image in overlapping patches to reduce memory usage when handling large images. Useful for high-resolution generation.

TemporalKernelSize

Gets the temporal kernel size.

public int TemporalKernelSize { get; }

Property Value

int

Methods

Clone()

Creates a deep copy of the VAE model.

public override IVAEModel<T> Clone()

Returns

IVAEModel<T>

A new instance with the same parameters.

Decode(Tensor<T>)

Decodes a latent representation back to image space.

public override Tensor<T> Decode(Tensor<T> latent)

Parameters

latent Tensor<T>

The latent tensor [batch, latentChannels, latentHeight, latentWidth].

Returns

Tensor<T>

The decoded image [batch, channels, heightdownFactor, widthdownFactor].

Remarks

For Beginners: This decompresses the latent back to an image: - Input: Small latent (64x64x4) - Output: Full-size image (512x512x3) - The image looks like the original but with minor differences due to compression

DecodeVideoFromDiffusion(Tensor<T>)

Decodes a diffusion video latent back to video space.

public Tensor<T> DecodeVideoFromDiffusion(Tensor<T> latent)

Parameters

latent Tensor<T>

The latent from diffusion (already scaled).

Returns

Tensor<T>

The decoded video.

DeepCopy()

Creates a deep copy of this object.

public override IFullModel<T, Tensor<T>, Tensor<T>> DeepCopy()

Returns

IFullModel<T, Tensor<T>, Tensor<T>>

Encode(Tensor<T>, bool)

Encodes an image into the latent space.

public override Tensor<T> Encode(Tensor<T> video, bool sampleMode = true)

Parameters

video Tensor<T>
sampleMode bool

If true, samples from the latent distribution. If false, returns the mean.

Returns

Tensor<T>

The latent representation [batch, latentChannels, height/downFactor, width/downFactor].

Remarks

The VAE encoder outputs a distribution (mean and log variance). When sampleMode is true, we sample from this distribution using the reparameterization trick. When false, we just return the mean for deterministic encoding.

For Beginners: This compresses the image: - Input: Full-size image (512x512x3) - Output: Small latent representation (64x64x4) - The latent contains all the important information in a compressed form

EncodeVideoForDiffusion(Tensor<T>, bool)

Encodes a video and applies latent scaling for use in diffusion.

public Tensor<T> EncodeVideoForDiffusion(Tensor<T> video, bool sampleMode = true)

Parameters

video Tensor<T>

The input video tensor.

sampleMode bool

Whether to sample from the distribution.

Returns

Tensor<T>

Scaled video latent representation.

EncodeWithDistribution(Tensor<T>)

Encodes and returns both mean and log variance (for training).

public override (Tensor<T> Mean, Tensor<T> LogVariance) EncodeWithDistribution(Tensor<T> video)

Parameters

video Tensor<T>

Returns

(Tensor<T> grad1, Tensor<T> grad2)

Tuple of (mean, logVariance) tensors.

Remarks

Used during VAE training where we need both the mean and variance for computing the KL divergence loss.

GetParameters()

Gets the parameters that can be optimized.

public override Vector<T> GetParameters()

Returns

Vector<T>

SetParameters(Vector<T>)

Sets the model parameters.

public override void SetParameters(Vector<T> parameters)

Parameters

parameters Vector<T>

The parameter vector to set.

Remarks

This method allows direct modification of the model's internal parameters. This is useful for optimization algorithms that need to update parameters iteratively. If the length of parameters does not match ParameterCount, an ArgumentException should be thrown.

Exceptions

ArgumentException

Thrown when the length of parameters does not match ParameterCount.