Class DocBank<T>
- Namespace
- AiDotNet.Document.Analysis.PageSegmentation
- Assembly
- AiDotNet.dll
DocBank model for document page segmentation and layout analysis.
public class DocBank<T> : DocumentNeuralNetworkBase<T>, INeuralNetworkModel<T>, INeuralNetwork<T>, IInterpretableModel<T>, IInputGradientComputable<T>, IDisposable, IPageSegmenter<T>, IDocumentModel<T>, IFullModel<T, Tensor<T>, Tensor<T>>, IModel<Tensor<T>, Tensor<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Tensor<T>, Tensor<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Tensor<T>, Tensor<T>>>, IGradientComputable<T, Tensor<T>, Tensor<T>>, IJitCompilable<T>
Type Parameters
TThe numeric type used for calculations.
- Inheritance
-
DocBank<T>
- Implements
- Inherited Members
- Extension Methods
Remarks
DocBank is a benchmark and model for document layout analysis that can segment document pages into semantic regions including text, titles, figures, tables, and captions. It combines visual features with optional text features for robust segmentation.
For Beginners: DocBank divides document pages into different regions: - Paragraphs: Regular text content - Titles: Document headings and titles - Figures: Images and diagrams - Tables: Tabular data regions - Captions: Text describing figures/tables - Lists: Bulleted or numbered lists - Equations: Mathematical formulas - And more...
Example usage:
var docbank = new DocBank<float>(architecture);
var result = docbank.SegmentPage(documentImage);
foreach (var region in result.Regions)
{
Console.WriteLine($"Found {region.RegionType} at {region.BoundingBox}");
}
Reference: "DocBank: A Benchmark Dataset for Document Layout Analysis" (COLING 2020) https://arxiv.org/abs/2006.01038
Constructors
DocBank(NeuralNetworkArchitecture<T>, int, int, int, int, bool, IOptimizer<T, Tensor<T>, Tensor<T>>?, ILossFunction<T>?)
Creates a DocBank model using native layers for training and inference.
public DocBank(NeuralNetworkArchitecture<T> architecture, int imageSize = 1024, int backboneChannels = 256, int numClasses = 13, int hiddenDim = 256, bool useTextFeatures = false, IOptimizer<T, Tensor<T>, Tensor<T>>? optimizer = null, ILossFunction<T>? lossFunction = null)
Parameters
architectureNeuralNetworkArchitecture<T>The neural network architecture.
imageSizeintExpected input image size (default: 1024).
backboneChannelsintBackbone output channels (default: 256).
numClassesintNumber of segmentation classes (default: 13 for DocBank).
hiddenDimintHidden dimension for segmentation head (default: 256).
useTextFeaturesboolWhether to use text features (default: false for image-only).
optimizerIOptimizer<T, Tensor<T>, Tensor<T>>Optimizer for training (optional).
lossFunctionILossFunction<T>Loss function (optional).
Remarks
Default Configuration (from COLING 2020 paper): - Backbone: ResNet-101 with FPN - Image size: 1024×1024 - Classes: 13 (paragraph, title, figure, table, etc.) - Can optionally incorporate text features from BERT
DocBank(NeuralNetworkArchitecture<T>, string, int, int, int, bool, IOptimizer<T, Tensor<T>, Tensor<T>>?, ILossFunction<T>?)
Creates a DocBank model using a pre-trained ONNX model for inference.
public DocBank(NeuralNetworkArchitecture<T> architecture, string onnxModelPath, int imageSize = 1024, int backboneChannels = 256, int numClasses = 13, bool useTextFeatures = false, IOptimizer<T, Tensor<T>, Tensor<T>>? optimizer = null, ILossFunction<T>? lossFunction = null)
Parameters
architectureNeuralNetworkArchitecture<T>The neural network architecture.
onnxModelPathstringPath to the ONNX model file.
imageSizeintExpected input image size (default: 1024).
backboneChannelsintBackbone output channels (default: 256).
numClassesintNumber of segmentation classes (default: 13 for DocBank).
useTextFeaturesboolWhether to use text features (default: false for image-only).
optimizerIOptimizer<T, Tensor<T>, Tensor<T>>Optimizer for training (optional).
lossFunctionILossFunction<T>Loss function (optional).
Exceptions
- ArgumentNullException
Thrown if onnxModelPath is null.
- FileNotFoundException
Thrown if ONNX model file doesn't exist.
Properties
ExpectedImageSize
Gets the expected input image size (assumes square images).
public int ExpectedImageSize { get; }
Property Value
Remarks
Common values: 224 (ViT base), 384, 448, 512, 768, 1024. Input images will be resized to [ImageSize x ImageSize] before processing.
NumClasses
Gets the number of segmentation classes.
public int NumClasses { get; }
Property Value
RequiresOCR
Gets whether this model requires OCR preprocessing.
public override bool RequiresOCR { get; }
Property Value
Remarks
Layout-aware models (LayoutLM, etc.) require OCR to provide text and bounding boxes. OCR-free models (Donut, Pix2Struct) process raw pixels directly.
SupportedDocumentTypes
Gets the supported document types for this model.
public override DocumentType SupportedDocumentTypes { get; }
Property Value
SupportedRegionTypes
Gets the region types this segmenter can detect.
public IReadOnlyList<DocumentRegionType> SupportedRegionTypes { get; }
Property Value
SupportsInstanceSegmentation
Gets whether this segmenter performs instance segmentation (separate instances of same type).
public bool SupportsInstanceSegmentation { get; }
Property Value
Methods
ApplyDefaultPostprocessing(Tensor<T>)
Applies DocBank's industry-standard postprocessing: softmax over class dimension.
protected override Tensor<T> ApplyDefaultPostprocessing(Tensor<T> modelOutput)
Parameters
modelOutputTensor<T>
Returns
- Tensor<T>
ApplyDefaultPreprocessing(Tensor<T>)
Applies DocBank's industry-standard preprocessing: ImageNet normalization.
protected override Tensor<T> ApplyDefaultPreprocessing(Tensor<T> rawImage)
Parameters
rawImageTensor<T>
Returns
- Tensor<T>
Remarks
DocBank uses ImageNet normalization with mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224, 0.225].
CreateNewInstance()
Creates a new instance of the same type as this neural network.
protected override IFullModel<T, Tensor<T>, Tensor<T>> CreateNewInstance()
Returns
- IFullModel<T, Tensor<T>, Tensor<T>>
A new instance of the same neural network type.
Remarks
For Beginners: This creates a blank version of the same type of neural network.
It's used internally by methods like DeepCopy and Clone to create the right type of network before copying the data into it.
DeserializeNetworkSpecificData(BinaryReader)
Deserializes network-specific data that was not covered by the general deserialization process.
protected override void DeserializeNetworkSpecificData(BinaryReader reader)
Parameters
readerBinaryReaderThe BinaryReader to read the data from.
Remarks
This method is called at the end of the general deserialization process to allow derived classes to read any additional data specific to their implementation.
For Beginners: Continuing the suitcase analogy, this is like unpacking that special compartment. After the main deserialization method has unpacked the common items (layers, parameters), this method allows each specific type of neural network to unpack its own unique items that were stored during serialization.
Dispose(bool)
Disposes of resources used by this model.
protected override void Dispose(bool disposing)
Parameters
disposingboolTrue if disposing managed resources.
EncodeDocument(Tensor<T>)
Processes a document image and returns encoded features.
public Tensor<T> EncodeDocument(Tensor<T> documentImage)
Parameters
documentImageTensor<T>The document image tensor [batch, channels, height, width] or [channels, height, width].
Returns
- Tensor<T>
Encoded document features suitable for downstream tasks.
Remarks
For Beginners: This method converts a document image into a numerical representation (feature vector) that captures the document's content and structure. These features can then be used for tasks like classification, QA, or information extraction.
GetModelMetadata()
Gets the metadata for this neural network model.
public override ModelMetadata<T> GetModelMetadata()
Returns
- ModelMetadata<T>
A ModelMetaData object containing information about the model.
GetModelSummary()
Gets a summary of the model architecture.
public string GetModelSummary()
Returns
- string
A string describing the model's architecture, parameters, and capabilities.
GetSegmentationMask(Tensor<T>)
Gets the pixel-level segmentation mask.
public Tensor<T> GetSegmentationMask(Tensor<T> documentImage)
Parameters
documentImageTensor<T>The document page image tensor.
Returns
- Tensor<T>
Segmentation mask with class indices for each pixel.
InitializeLayers()
Initializes the layers of the neural network based on the architecture.
protected override void InitializeLayers()
Remarks
For Beginners: This method sets up all the layers in your neural network according to the architecture you've defined. It's like assembling the parts of your network before you can use it.
Predict(Tensor<T>)
Makes a prediction using the neural network.
public override Tensor<T> Predict(Tensor<T> input)
Parameters
inputTensor<T>The input data to process.
Returns
- Tensor<T>
The network's prediction.
Remarks
For Beginners: This is the main method you'll use to get results from your trained neural network. You provide some input data (like an image or text), and the network processes it through all its layers to produce an output (like a classification or prediction).
SegmentPage(Tensor<T>)
Segments a document page into semantic regions.
public PageSegmentationResult<T> SegmentPage(Tensor<T> documentImage)
Parameters
documentImageTensor<T>The document page image tensor.
Returns
- PageSegmentationResult<T>
Segmentation result with labeled regions.
SegmentPage(Tensor<T>, double)
Segments a document page with a custom confidence threshold.
public PageSegmentationResult<T> SegmentPage(Tensor<T> documentImage, double confidenceThreshold)
Parameters
documentImageTensor<T>The document page image tensor.
confidenceThresholddoubleMinimum confidence for region detection (0-1).
Returns
- PageSegmentationResult<T>
Segmentation result with labeled regions.
SerializeNetworkSpecificData(BinaryWriter)
Serializes network-specific data that is not covered by the general serialization process.
protected override void SerializeNetworkSpecificData(BinaryWriter writer)
Parameters
writerBinaryWriterThe BinaryWriter to write the data to.
Remarks
This method is called at the end of the general serialization process to allow derived classes to write any additional data specific to their implementation.
For Beginners: Think of this as packing a special compartment in your suitcase. While the main serialization method packs the common items (layers, parameters), this method allows each specific type of neural network to pack its own unique items that other networks might not have.
Train(Tensor<T>, Tensor<T>)
Trains the neural network on a single input-output pair.
public override void Train(Tensor<T> input, Tensor<T> expectedOutput)
Parameters
inputTensor<T>The input data.
expectedOutputTensor<T>The expected output for the given input.
Remarks
This method performs one training step on the neural network using the provided input and expected output. It updates the network's parameters to reduce the error between the network's prediction and the expected output.
For Beginners: This is how your neural network learns. You provide: - An input (what the network should process) - The expected output (what the correct answer should be)
The network then:
- Makes a prediction based on the input
- Compares its prediction to the expected output
- Calculates how wrong it was (the loss)
- Adjusts its internal values to do better next time
After training, you can get the loss value using the GetLastLoss() method to see how well the network is learning.
UpdateParameters(Vector<T>)
Updates the network's parameters with new values.
public override void UpdateParameters(Vector<T> gradients)
Parameters
gradientsVector<T>
Remarks
For Beginners: During training, a neural network's internal values (parameters) get adjusted to improve its performance. This method allows you to update all those values at once by providing a complete set of new parameters.
This is typically used by optimization algorithms that calculate better parameter values based on training data.
ValidateInputShape(Tensor<T>)
Validates that an input tensor has the correct shape for this model.
public void ValidateInputShape(Tensor<T> documentImage)
Parameters
documentImageTensor<T>The tensor to validate.
Exceptions
- ArgumentException
Thrown if the tensor shape is invalid.