Table of Contents

Class LayoutLM<T>

Namespace
AiDotNet.Document.LayoutAware
Assembly
AiDotNet.dll

LayoutLM (v1) neural network for document understanding with layout-aware pre-training.

public class LayoutLM<T> : DocumentNeuralNetworkBase<T>, INeuralNetworkModel<T>, INeuralNetwork<T>, IInterpretableModel<T>, IInputGradientComputable<T>, IDisposable, ILayoutDetector<T>, IDocumentModel<T>, IFullModel<T, Tensor<T>, Tensor<T>>, IModel<Tensor<T>, Tensor<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Tensor<T>, Tensor<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Tensor<T>, Tensor<T>>>, IGradientComputable<T, Tensor<T>, Tensor<T>>, IJitCompilable<T>

Type Parameters

T

The numeric type used for calculations.

Inheritance
LayoutLM<T>
Implements
IFullModel<T, Tensor<T>, Tensor<T>>
IModel<Tensor<T>, Tensor<T>, ModelMetadata<T>>
IParameterizable<T, Tensor<T>, Tensor<T>>
ICloneable<IFullModel<T, Tensor<T>, Tensor<T>>>
IGradientComputable<T, Tensor<T>, Tensor<T>>
Inherited Members
Extension Methods

Remarks

LayoutLM is the first generation of Microsoft's layout-aware document understanding models. It combines text embeddings with 2D position embeddings to jointly model text and layout.

For Beginners: LayoutLM understands documents by learning from both: 1. The text content (what the words say) 2. The layout structure (where words are positioned on the page)

Unlike LayoutLMv2/v3, this version does NOT use visual features (images), making it lighter but less powerful for visually-rich documents.

Example usage:

var model = new LayoutLM<float>(architecture, tokenizer);
var embeddings = model.EncodeDocument(documentText, boundingBoxes);

Reference: "LayoutLM: Pre-training of Text and Layout for Document Image Understanding" (KDD 2020) https://arxiv.org/abs/1912.13318

Constructors

LayoutLM(NeuralNetworkArchitecture<T>, ITokenizer?, int, int, int, int, int, int, int, IOptimizer<T, Tensor<T>, Tensor<T>>?, ILossFunction<T>?)

Creates a LayoutLM model using native layers for training and inference.

public LayoutLM(NeuralNetworkArchitecture<T> architecture, ITokenizer? tokenizer = null, int numClasses = 7, int maxSequenceLength = 512, int hiddenDim = 768, int numLayers = 12, int numHeads = 12, int vocabSize = 30522, int maxPosition2D = 1024, IOptimizer<T, Tensor<T>, Tensor<T>>? optimizer = null, ILossFunction<T>? lossFunction = null)

Parameters

architecture NeuralNetworkArchitecture<T>

The neural network architecture.

tokenizer ITokenizer

Tokenizer for text processing (optional).

numClasses int

Number of output classes (default: 7 for FUNSD).

maxSequenceLength int

Maximum sequence length (default: 512).

hiddenDim int

Hidden dimension (default: 768 for base).

numLayers int

Number of transformer layers (default: 12).

numHeads int

Number of attention heads (default: 12).

vocabSize int

Vocabulary size (default: 30522 for BERT).

maxPosition2D int

Max 2D position value (default: 1024).

optimizer IOptimizer<T, Tensor<T>, Tensor<T>>

Optimizer for training (optional).

lossFunction ILossFunction<T>

Loss function (optional).

Remarks

Default Configuration (LayoutLM-Base from KDD 2020): - Architecture: BERT-base with 2D position embeddings - Hidden dimension: 768 - Layers: 12, Heads: 12 - 2D position range: 0-1024 (normalized coordinates)

LayoutLM(NeuralNetworkArchitecture<T>, string, ITokenizer, int, int, int, int, int, int, int, IOptimizer<T, Tensor<T>, Tensor<T>>?, ILossFunction<T>?)

Creates a LayoutLM model using a pre-trained ONNX model for inference.

public LayoutLM(NeuralNetworkArchitecture<T> architecture, string onnxModelPath, ITokenizer tokenizer, int numClasses = 7, int maxSequenceLength = 512, int hiddenDim = 768, int numLayers = 12, int numHeads = 12, int vocabSize = 30522, int maxPosition2D = 1024, IOptimizer<T, Tensor<T>, Tensor<T>>? optimizer = null, ILossFunction<T>? lossFunction = null)

Parameters

architecture NeuralNetworkArchitecture<T>

The neural network architecture.

onnxModelPath string

Path to the ONNX model file.

tokenizer ITokenizer

Tokenizer for text processing.

numClasses int

Number of output classes (default: 7 for FUNSD).

maxSequenceLength int

Maximum sequence length (default: 512).

hiddenDim int

Hidden dimension (default: 768 for base).

numLayers int

Number of transformer layers (default: 12).

numHeads int

Number of attention heads (default: 12).

vocabSize int

Vocabulary size (default: 30522 for BERT).

maxPosition2D int

Max 2D position value (default: 1024).

optimizer IOptimizer<T, Tensor<T>, Tensor<T>>

Optimizer for training (optional).

lossFunction ILossFunction<T>

Loss function (optional).

Properties

ExpectedImageSize

Gets the expected input image size (assumes square images).

public int ExpectedImageSize { get; }

Property Value

int

Remarks

Common values: 224 (ViT base), 384, 448, 512, 768, 1024. Input images will be resized to [ImageSize x ImageSize] before processing.

RequiresOCR

Gets whether this model requires OCR preprocessing.

public override bool RequiresOCR { get; }

Property Value

bool

Remarks

Layout-aware models (LayoutLM, etc.) require OCR to provide text and bounding boxes. OCR-free models (Donut, Pix2Struct) process raw pixels directly.

SupportedDocumentTypes

Gets the supported document types for this model.

public override DocumentType SupportedDocumentTypes { get; }

Property Value

DocumentType

SupportedElementTypes

Gets the layout element types this detector can identify.

public IReadOnlyList<LayoutElementType> SupportedElementTypes { get; }

Property Value

IReadOnlyList<LayoutElementType>

Methods

ApplyDefaultPostprocessing(Tensor<T>)

Applies LayoutLM's industry-standard postprocessing: softmax over class dimension.

protected override Tensor<T> ApplyDefaultPostprocessing(Tensor<T> modelOutput)

Parameters

modelOutput Tensor<T>

Returns

Tensor<T>

ApplyDefaultPreprocessing(Tensor<T>)

Applies LayoutLM's industry-standard preprocessing: pass-through (works with pre-tokenized input).

protected override Tensor<T> ApplyDefaultPreprocessing(Tensor<T> rawImage)

Parameters

rawImage Tensor<T>

Returns

Tensor<T>

Remarks

LayoutLM v1 (Microsoft paper) works primarily with pre-tokenized text and bounding boxes.

CreateNewInstance()

Creates a new instance of the same type as this neural network.

protected override IFullModel<T, Tensor<T>, Tensor<T>> CreateNewInstance()

Returns

IFullModel<T, Tensor<T>, Tensor<T>>

A new instance of the same neural network type.

Remarks

For Beginners: This creates a blank version of the same type of neural network.

It's used internally by methods like DeepCopy and Clone to create the right type of network before copying the data into it.

DeserializeNetworkSpecificData(BinaryReader)

Deserializes network-specific data that was not covered by the general deserialization process.

protected override void DeserializeNetworkSpecificData(BinaryReader reader)

Parameters

reader BinaryReader

The BinaryReader to read the data from.

Remarks

This method is called at the end of the general deserialization process to allow derived classes to read any additional data specific to their implementation.

For Beginners: Continuing the suitcase analogy, this is like unpacking that special compartment. After the main deserialization method has unpacked the common items (layers, parameters), this method allows each specific type of neural network to unpack its own unique items that were stored during serialization.

DetectLayout(Tensor<T>)

Detects layout regions in a document image.

public DocumentLayoutResult<T> DetectLayout(Tensor<T> documentImage)

Parameters

documentImage Tensor<T>

The document image tensor [batch, channels, height, width].

Returns

DocumentLayoutResult<T>

Layout detection result with regions and their types.

DetectLayout(Tensor<T>, double)

Detects layout regions with a specified confidence threshold.

public DocumentLayoutResult<T> DetectLayout(Tensor<T> documentImage, double confidenceThreshold)

Parameters

documentImage Tensor<T>

The document image tensor.

confidenceThreshold double

Minimum confidence for detected regions (0.0 to 1.0).

Returns

DocumentLayoutResult<T>

Filtered layout detection result.

Remarks

Higher thresholds return fewer but more confident detections. Lower thresholds return more detections but may include false positives.

Dispose(bool)

Disposes of resources used by this model.

protected override void Dispose(bool disposing)

Parameters

disposing bool

True if disposing managed resources.

EncodeDocument(Tensor<T>)

Processes a document image and returns encoded features.

public Tensor<T> EncodeDocument(Tensor<T> documentImage)

Parameters

documentImage Tensor<T>

The document image tensor [batch, channels, height, width] or [channels, height, width].

Returns

Tensor<T>

Encoded document features suitable for downstream tasks.

Remarks

For Beginners: This method converts a document image into a numerical representation (feature vector) that captures the document's content and structure. These features can then be used for tasks like classification, QA, or information extraction.

GetModelMetadata()

Gets the metadata for this neural network model.

public override ModelMetadata<T> GetModelMetadata()

Returns

ModelMetadata<T>

A ModelMetaData object containing information about the model.

GetModelSummary()

Gets a summary of the model architecture.

public string GetModelSummary()

Returns

string

A string describing the model's architecture, parameters, and capabilities.

InitializeLayers()

Initializes the layers of the neural network based on the architecture.

protected override void InitializeLayers()

Remarks

For Beginners: This method sets up all the layers in your neural network according to the architecture you've defined. It's like assembling the parts of your network before you can use it.

Predict(Tensor<T>)

Makes a prediction using the neural network.

public override Tensor<T> Predict(Tensor<T> input)

Parameters

input Tensor<T>

The input data to process.

Returns

Tensor<T>

The network's prediction.

Remarks

For Beginners: This is the main method you'll use to get results from your trained neural network. You provide some input data (like an image or text), and the network processes it through all its layers to produce an output (like a classification or prediction).

SerializeNetworkSpecificData(BinaryWriter)

Serializes network-specific data that is not covered by the general serialization process.

protected override void SerializeNetworkSpecificData(BinaryWriter writer)

Parameters

writer BinaryWriter

The BinaryWriter to write the data to.

Remarks

This method is called at the end of the general serialization process to allow derived classes to write any additional data specific to their implementation.

For Beginners: Think of this as packing a special compartment in your suitcase. While the main serialization method packs the common items (layers, parameters), this method allows each specific type of neural network to pack its own unique items that other networks might not have.

Train(Tensor<T>, Tensor<T>)

Trains the neural network on a single input-output pair.

public override void Train(Tensor<T> input, Tensor<T> expectedOutput)

Parameters

input Tensor<T>

The input data.

expectedOutput Tensor<T>

The expected output for the given input.

Remarks

This method performs one training step on the neural network using the provided input and expected output. It updates the network's parameters to reduce the error between the network's prediction and the expected output.

For Beginners: This is how your neural network learns. You provide: - An input (what the network should process) - The expected output (what the correct answer should be)

The network then:

  1. Makes a prediction based on the input
  2. Compares its prediction to the expected output
  3. Calculates how wrong it was (the loss)
  4. Adjusts its internal values to do better next time

After training, you can get the loss value using the GetLastLoss() method to see how well the network is learning.

UpdateParameters(Vector<T>)

Updates the network's parameters with new values.

public override void UpdateParameters(Vector<T> gradients)

Parameters

gradients Vector<T>

Remarks

For Beginners: During training, a neural network's internal values (parameters) get adjusted to improve its performance. This method allows you to update all those values at once by providing a complete set of new parameters.

This is typically used by optimization algorithms that calculate better parameter values based on training data.

ValidateInputShape(Tensor<T>)

Validates that an input tensor has the correct shape for this model.

public void ValidateInputShape(Tensor<T> documentImage)

Parameters

documentImage Tensor<T>

The tensor to validate.

Exceptions

ArgumentException

Thrown if the tensor shape is invalid.