Class TrOCR<T>
- Namespace
- AiDotNet.Document.OCR.TextRecognition
- Assembly
- AiDotNet.dll
TrOCR (Transformer-based OCR) for text recognition from cropped images.
public class TrOCR<T> : DocumentNeuralNetworkBase<T>, INeuralNetworkModel<T>, INeuralNetwork<T>, IInterpretableModel<T>, IInputGradientComputable<T>, IDisposable, ITextRecognizer<T>, IDocumentModel<T>, IFullModel<T, Tensor<T>, Tensor<T>>, IModel<Tensor<T>, Tensor<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Tensor<T>, Tensor<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Tensor<T>, Tensor<T>>>, IGradientComputable<T, Tensor<T>, Tensor<T>>, IJitCompilable<T>
Type Parameters
TThe numeric type used for calculations.
- Inheritance
-
TrOCR<T>
- Implements
- Inherited Members
- Extension Methods
Remarks
TrOCR is an end-to-end text recognition model that uses a Vision Transformer (ViT) encoder and a Transformer decoder (similar to BART/GPT-2) for sequence generation.
For Beginners: TrOCR reads text from images. Given a cropped image of text (like a single word or line), it outputs the actual characters. It works by: 1. The encoder (ViT) analyzes the image and creates feature representations 2. The decoder generates text one character at a time, using attention to focus on relevant image regions
Example usage:
var trocr = new TrOCR<float>(architecture);
var result = trocr.RecognizeText(croppedTextImage);
Console.WriteLine($"Text: {result.Text}, Confidence: {result.ConfidenceValue}");
Reference: "TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models" (AAAI 2022) https://arxiv.org/abs/2109.10282
Constructors
TrOCR(NeuralNetworkArchitecture<T>, ITokenizer?, int, int, int, int, int, int, int, int, int, int, int, IOptimizer<T, Tensor<T>, Tensor<T>>?, ILossFunction<T>?)
Creates a TrOCR model using native layers for training and inference.
public TrOCR(NeuralNetworkArchitecture<T> architecture, ITokenizer? tokenizer = null, int imageHeight = 384, int imageWidth = 384, int maxSequenceLength = 128, int encoderHiddenDim = 768, int decoderHiddenDim = 768, int numEncoderLayers = 12, int numDecoderLayers = 6, int numEncoderHeads = 12, int numDecoderHeads = 12, int patchSize = 16, int vocabSize = 50265, IOptimizer<T, Tensor<T>, Tensor<T>>? optimizer = null, ILossFunction<T>? lossFunction = null)
Parameters
architectureNeuralNetworkArchitecture<T>The neural network architecture.
tokenizerITokenizerTokenizer for text generation (optional).
imageHeightintInput image height (default: 384 for TrOCR-base).
imageWidthintInput image width (default: 384).
maxSequenceLengthintMaximum output sequence length (default: 128).
encoderHiddenDimintEncoder hidden dimension (default: 768 for base).
decoderHiddenDimintDecoder hidden dimension (default: 768 for base).
numEncoderLayersintNumber of encoder layers (default: 12).
numDecoderLayersintNumber of decoder layers (default: 6).
numEncoderHeadsintNumber of encoder attention heads (default: 12).
numDecoderHeadsintNumber of decoder attention heads (default: 12).
patchSizeintViT patch size (default: 16).
vocabSizeintVocabulary size (default: 50265 for RoBERTa tokenizer).
optimizerIOptimizer<T, Tensor<T>, Tensor<T>>Optimizer for training (optional).
lossFunctionILossFunction<T>Loss function (optional).
Remarks
Default Configuration (TrOCR-Base from AAAI 2022 paper): - Encoder: ViT-Base (12 layers, 768 hidden, 12 heads) - Decoder: 6 layers, 768 hidden, 12 heads - Image size: 384×384 - Patch size: 16
TrOCR(NeuralNetworkArchitecture<T>, string, string, ITokenizer, int, int, int, int, int, int, int, int, int, int, int, IOptimizer<T, Tensor<T>, Tensor<T>>?, ILossFunction<T>?)
Creates a TrOCR model using pre-trained ONNX models for inference.
public TrOCR(NeuralNetworkArchitecture<T> architecture, string encoderPath, string decoderPath, ITokenizer tokenizer, int imageHeight = 384, int imageWidth = 384, int maxSequenceLength = 128, int encoderHiddenDim = 768, int decoderHiddenDim = 768, int numEncoderLayers = 12, int numDecoderLayers = 6, int numEncoderHeads = 12, int numDecoderHeads = 12, int patchSize = 16, int vocabSize = 50265, IOptimizer<T, Tensor<T>, Tensor<T>>? optimizer = null, ILossFunction<T>? lossFunction = null)
Parameters
architectureNeuralNetworkArchitecture<T>The neural network architecture.
encoderPathstringPath to the ONNX encoder model.
decoderPathstringPath to the ONNX decoder model.
tokenizerITokenizerTokenizer for text generation.
imageHeightintInput image height (default: 384 for TrOCR-base).
imageWidthintInput image width (default: 384).
maxSequenceLengthintMaximum output sequence length (default: 128).
encoderHiddenDimintEncoder hidden dimension (default: 768 for base).
decoderHiddenDimintDecoder hidden dimension (default: 768 for base).
numEncoderLayersintNumber of encoder layers (default: 12).
numDecoderLayersintNumber of decoder layers (default: 6).
numEncoderHeadsintNumber of encoder attention heads (default: 12).
numDecoderHeadsintNumber of decoder attention heads (default: 12).
patchSizeintViT patch size (default: 16).
vocabSizeintVocabulary size (default: 50265 for RoBERTa tokenizer).
optimizerIOptimizer<T, Tensor<T>, Tensor<T>>Optimizer for training (optional).
lossFunctionILossFunction<T>Loss function (optional).
Exceptions
- ArgumentNullException
Thrown if paths or tokenizer is null.
- FileNotFoundException
Thrown if ONNX model files don't exist.
Properties
ExpectedImageSize
Gets the expected input image size (assumes square images).
public int ExpectedImageSize { get; }
Property Value
Remarks
Common values: 224 (ViT base), 384, 448, 512, 768, 1024. Input images will be resized to [ImageSize x ImageSize] before processing.
RequiresOCR
Gets whether this model requires OCR preprocessing.
public override bool RequiresOCR { get; }
Property Value
Remarks
Layout-aware models (LayoutLM, etc.) require OCR to provide text and bounding boxes. OCR-free models (Donut, Pix2Struct) process raw pixels directly.
SupportedCharacters
Gets the supported character set (alphabet) for this recognizer.
public string SupportedCharacters { get; }
Property Value
SupportedDocumentTypes
Gets the supported document types for this model.
public override DocumentType SupportedDocumentTypes { get; }
Property Value
SupportsAttentionVisualization
Gets whether this recognizer supports attention visualization.
public bool SupportsAttentionVisualization { get; }
Property Value
Methods
ApplyDefaultPostprocessing(Tensor<T>)
Applies TrOCR's industry-standard postprocessing: pass-through (encoder-decoder outputs are already final).
protected override Tensor<T> ApplyDefaultPostprocessing(Tensor<T> modelOutput)
Parameters
modelOutputTensor<T>
Returns
- Tensor<T>
ApplyDefaultPreprocessing(Tensor<T>)
Applies TrOCR's industry-standard preprocessing: normalize to [-1, 1].
protected override Tensor<T> ApplyDefaultPreprocessing(Tensor<T> rawImage)
Parameters
rawImageTensor<T>
Returns
- Tensor<T>
Remarks
TrOCR (Transformer-based OCR) uses mean=0.5, std=0.5 normalization (same as DeiT/BEiT) from Microsoft paper.
CreateNewInstance()
Creates a new instance of the same type as this neural network.
protected override IFullModel<T, Tensor<T>, Tensor<T>> CreateNewInstance()
Returns
- IFullModel<T, Tensor<T>, Tensor<T>>
A new instance of the same neural network type.
Remarks
For Beginners: This creates a blank version of the same type of neural network.
It's used internally by methods like DeepCopy and Clone to create the right type of network before copying the data into it.
DeserializeNetworkSpecificData(BinaryReader)
Deserializes network-specific data that was not covered by the general deserialization process.
protected override void DeserializeNetworkSpecificData(BinaryReader reader)
Parameters
readerBinaryReaderThe BinaryReader to read the data from.
Remarks
This method is called at the end of the general deserialization process to allow derived classes to read any additional data specific to their implementation.
For Beginners: Continuing the suitcase analogy, this is like unpacking that special compartment. After the main deserialization method has unpacked the common items (layers, parameters), this method allows each specific type of neural network to unpack its own unique items that were stored during serialization.
Dispose(bool)
Disposes of resources used by this model.
protected override void Dispose(bool disposing)
Parameters
disposingboolTrue if disposing managed resources.
EncodeDocument(Tensor<T>)
Processes a document image and returns encoded features.
public Tensor<T> EncodeDocument(Tensor<T> documentImage)
Parameters
documentImageTensor<T>The document image tensor [batch, channels, height, width] or [channels, height, width].
Returns
- Tensor<T>
Encoded document features suitable for downstream tasks.
Remarks
For Beginners: This method converts a document image into a numerical representation (feature vector) that captures the document's content and structure. These features can then be used for tasks like classification, QA, or information extraction.
GetAttentionWeights()
Gets the attention weights for visualization (if supported).
public Tensor<T>? GetAttentionWeights()
Returns
- Tensor<T>
Attention tensor showing which image regions influenced each character.
GetCharacterProbabilities()
Gets the character-level probabilities for the last recognition.
public Tensor<T> GetCharacterProbabilities()
Returns
- Tensor<T>
Tensor of shape [sequence_length, vocab_size] with probabilities.
GetModelMetadata()
Gets the metadata for this neural network model.
public override ModelMetadata<T> GetModelMetadata()
Returns
- ModelMetadata<T>
A ModelMetaData object containing information about the model.
GetModelSummary()
Gets a summary of the model architecture.
public string GetModelSummary()
Returns
- string
A string describing the model's architecture, parameters, and capabilities.
InitializeLayers()
Initializes the layers of the neural network based on the architecture.
protected override void InitializeLayers()
Remarks
For Beginners: This method sets up all the layers in your neural network according to the architecture you've defined. It's like assembling the parts of your network before you can use it.
Predict(Tensor<T>)
Makes a prediction using the neural network.
public override Tensor<T> Predict(Tensor<T> input)
Parameters
inputTensor<T>The input data to process.
Returns
- Tensor<T>
The network's prediction.
Remarks
For Beginners: This is the main method you'll use to get results from your trained neural network. You provide some input data (like an image or text), and the network processes it through all its layers to produce an output (like a classification or prediction).
RecognizeText(Tensor<T>)
Recognizes text from a cropped image region.
public TextRecognitionResult<T> RecognizeText(Tensor<T> croppedImage)
Parameters
croppedImageTensor<T>Cropped image containing text (from text detector).
Returns
- TextRecognitionResult<T>
Recognition result with text and confidence.
RecognizeTextBatch(IEnumerable<Tensor<T>>)
Recognizes text from multiple cropped image regions (batch processing).
public IEnumerable<TextRecognitionResult<T>> RecognizeTextBatch(IEnumerable<Tensor<T>> croppedImages)
Parameters
croppedImagesIEnumerable<Tensor<T>>List of cropped images containing text.
Returns
- IEnumerable<TextRecognitionResult<T>>
List of recognition results.
SerializeNetworkSpecificData(BinaryWriter)
Serializes network-specific data that is not covered by the general serialization process.
protected override void SerializeNetworkSpecificData(BinaryWriter writer)
Parameters
writerBinaryWriterThe BinaryWriter to write the data to.
Remarks
This method is called at the end of the general serialization process to allow derived classes to write any additional data specific to their implementation.
For Beginners: Think of this as packing a special compartment in your suitcase. While the main serialization method packs the common items (layers, parameters), this method allows each specific type of neural network to pack its own unique items that other networks might not have.
Train(Tensor<T>, Tensor<T>)
Trains the neural network on a single input-output pair.
public override void Train(Tensor<T> input, Tensor<T> expectedOutput)
Parameters
inputTensor<T>The input data.
expectedOutputTensor<T>The expected output for the given input.
Remarks
This method performs one training step on the neural network using the provided input and expected output. It updates the network's parameters to reduce the error between the network's prediction and the expected output.
For Beginners: This is how your neural network learns. You provide: - An input (what the network should process) - The expected output (what the correct answer should be)
The network then:
- Makes a prediction based on the input
- Compares its prediction to the expected output
- Calculates how wrong it was (the loss)
- Adjusts its internal values to do better next time
After training, you can get the loss value using the GetLastLoss() method to see how well the network is learning.
UpdateParameters(Vector<T>)
Updates the network's parameters with new values.
public override void UpdateParameters(Vector<T> gradients)
Parameters
gradientsVector<T>
Remarks
For Beginners: During training, a neural network's internal values (parameters) get adjusted to improve its performance. This method allows you to update all those values at once by providing a complete set of new parameters.
This is typically used by optimization algorithms that calculate better parameter values based on training data.
ValidateInputShape(Tensor<T>)
Validates that an input tensor has the correct shape for this model.
public void ValidateInputShape(Tensor<T> documentImage)
Parameters
documentImageTensor<T>The tensor to validate.
Exceptions
- ArgumentException
Thrown if the tensor shape is invalid.