Class Donut<T>
- Namespace
- AiDotNet.Document.PixelToSequence
- Assembly
- AiDotNet.dll
Donut (Document Understanding Transformer) - OCR-free end-to-end document understanding model.
public class Donut<T> : DocumentNeuralNetworkBase<T>, INeuralNetworkModel<T>, INeuralNetwork<T>, IInterpretableModel<T>, IInputGradientComputable<T>, IDisposable, IOCRModel<T>, IDocumentQA<T>, IDocumentModel<T>, IFullModel<T, Tensor<T>, Tensor<T>>, IModel<Tensor<T>, Tensor<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Tensor<T>, Tensor<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Tensor<T>, Tensor<T>>>, IGradientComputable<T, Tensor<T>, Tensor<T>>, IJitCompilable<T>
Type Parameters
TThe numeric type used for calculations.
- Inheritance
-
Donut<T>
- Implements
-
IOCRModel<T>IDocumentQA<T>
- Inherited Members
- Extension Methods
Remarks
Donut is an OCR-free model that directly converts document images to structured text outputs without requiring a separate OCR stage. It uses a vision encoder (Swin Transformer) and text decoder (BART) architecture.
For Beginners: Unlike traditional document AI which first extracts text using OCR and then processes it, Donut looks directly at the document image pixels and generates text output. This makes it:
- Simpler: No need for a separate OCR system
- More robust: Less affected by OCR errors
- End-to-end trainable: Can optimize for the final task directly
Donut is excellent for:
- Document parsing (invoices, receipts, forms)
- Information extraction
- Document question answering
- Document classification
Example usage:
var donut = new Donut<float>(architecture);
var result = donut.ParseDocument(documentImage, "invoice");
Console.WriteLine(result.ParsedContent);
Reference: "OCR-free Document Understanding Transformer" (ECCV 2022) https://arxiv.org/abs/2111.15664
Constructors
Donut(NeuralNetworkArchitecture<T>, ITokenizer?, int, int, int, int, int[]?, int[]?, int, int, int, int, int, int, int, IOptimizer<T, Tensor<T>, Tensor<T>>?, ILossFunction<T>?)
Creates a Donut model using native layers for training and inference.
public Donut(NeuralNetworkArchitecture<T> architecture, ITokenizer? tokenizer = null, int imageHeight = 1920, int imageWidth = 2560, int maxGenerationLength = 768, int embedDim = 128, int[]? depths = null, int[]? numHeads = null, int windowSize = 10, int patchSize = 4, int mlpRatio = 4, int decoderHiddenDim = 1024, int numDecoderLayers = 4, int decoderHeads = 16, int vocabSize = 57522, IOptimizer<T, Tensor<T>, Tensor<T>>? optimizer = null, ILossFunction<T>? lossFunction = null)
Parameters
architectureNeuralNetworkArchitecture<T>The neural network architecture.
tokenizerITokenizerTokenizer for text generation (optional).
imageHeightintInput image height (default: 1920 for donut-base).
imageWidthintInput image width (default: 2560 for donut-base).
maxGenerationLengthintMaximum output sequence length (default: 768).
embedDimintInitial embedding dimension (default: 128 for Swin-B).
depthsint[]Depths of each Swin stage (default: {2,2,14,2} for donut-base).
numHeadsint[]Attention heads per stage (default: {4,8,16,32}).
windowSizeintWindow size for attention (default: 10 for donut-base).
patchSizeintInitial patch size (default: 4).
mlpRatiointMLP expansion ratio (default: 4).
decoderHiddenDimintDecoder hidden dimension (default: 1024).
numDecoderLayersintNumber of decoder layers (default: 4).
decoderHeadsintNumber of decoder attention heads (default: 16).
vocabSizeintVocabulary size (default: 57522).
optimizerIOptimizer<T, Tensor<T>, Tensor<T>>Optimizer for training (optional).
lossFunctionILossFunction<T>Loss function (optional).
Remarks
Default Configuration (donut-base from ECCV 2022 paper): - Input: 2560×1920 RGB images - Encoder: Swin-B with depths {2,2,14,2}, 128 initial dim, window size 10 - Decoder: 4-layer BART-style with 1024 hidden dim
Donut(NeuralNetworkArchitecture<T>, string, string, ITokenizer, int, int, int, int, int[]?, int[]?, int, int, int, int, int, int, IOptimizer<T, Tensor<T>, Tensor<T>>?, ILossFunction<T>?)
Creates a Donut model using pre-trained ONNX models for inference.
public Donut(NeuralNetworkArchitecture<T> architecture, string encoderPath, string decoderPath, ITokenizer tokenizer, int imageHeight = 1920, int imageWidth = 2560, int maxGenerationLength = 768, int embedDim = 128, int[]? depths = null, int[]? numHeads = null, int windowSize = 10, int patchSize = 4, int decoderHiddenDim = 1024, int numDecoderLayers = 4, int decoderHeads = 16, int vocabSize = 57522, IOptimizer<T, Tensor<T>, Tensor<T>>? optimizer = null, ILossFunction<T>? lossFunction = null)
Parameters
architectureNeuralNetworkArchitecture<T>The neural network architecture.
encoderPathstringPath to the ONNX encoder model.
decoderPathstringPath to the ONNX decoder model.
tokenizerITokenizerTokenizer for text generation.
imageHeightintInput image height (default: 1920 for donut-base).
imageWidthintInput image width (default: 2560 for donut-base).
maxGenerationLengthintMaximum output sequence length (default: 768).
embedDimintInitial embedding dimension (default: 128 for Swin-B).
depthsint[]Depths of each Swin stage (default: {2,2,14,2} for donut-base).
numHeadsint[]Attention heads per stage (default: {4,8,16,32}).
windowSizeintWindow size for attention (default: 10 for donut-base).
patchSizeintInitial patch size (default: 4).
decoderHiddenDimintDecoder hidden dimension (default: 1024).
numDecoderLayersintNumber of decoder layers (default: 4).
decoderHeadsintNumber of decoder attention heads (default: 16).
vocabSizeintVocabulary size (default: 57522).
optimizerIOptimizer<T, Tensor<T>, Tensor<T>>Optimizer for training (optional, Adam used if null).
lossFunctionILossFunction<T>Loss function (optional, CrossEntropy used if null).
Exceptions
- ArgumentNullException
Thrown if paths or tokenizer is null.
- FileNotFoundException
Thrown if ONNX model files don't exist.
Properties
ExpectedImageSize
Gets the expected input image size (assumes square images).
public int ExpectedImageSize { get; }
Property Value
Remarks
Common values: 224 (ViT base), 384, 448, 512, 768, 1024. Input images will be resized to [ImageSize x ImageSize] before processing.
IsOCRFree
Gets whether this is an OCR-free model (end-to-end pixel-to-text).
public bool IsOCRFree { get; }
Property Value
Remarks
OCR-free models like Donut directly convert pixels to text without explicit text detection or recognition stages. Traditional OCR has separate stages.
MaxGenerationLength
Gets the maximum generation length for output sequences.
public int MaxGenerationLength { get; }
Property Value
RequiresOCR
Gets whether this model requires OCR preprocessing.
public override bool RequiresOCR { get; }
Property Value
Remarks
Layout-aware models (LayoutLM, etc.) require OCR to provide text and bounding boxes. OCR-free models (Donut, Pix2Struct) process raw pixels directly.
SupportedDocumentTypes
Gets the supported document types for this model.
public override DocumentType SupportedDocumentTypes { get; }
Property Value
SupportedLanguages
Gets the languages supported by this OCR model.
public IReadOnlyList<string> SupportedLanguages { get; }
Property Value
Remarks
Languages are specified using ISO 639-1 codes (e.g., "en", "zh", "ja"). Some models support multiple languages simultaneously.
Methods
AnswerQuestion(Tensor<T>, string)
Answers a question about a document.
public DocumentQAResult<T> AnswerQuestion(Tensor<T> documentImage, string question)
Parameters
documentImageTensor<T>The document image tensor.
questionstringThe question to answer in natural language.
Returns
- DocumentQAResult<T>
The answer with confidence and evidence information.
AnswerQuestion(Tensor<T>, string, int, double)
Answers a question with generation parameters.
public DocumentQAResult<T> AnswerQuestion(Tensor<T> documentImage, string question, int maxAnswerLength, double temperature = 0)
Parameters
documentImageTensor<T>The document image tensor.
questionstringThe question to answer.
maxAnswerLengthintMaximum length of the generated answer.
temperaturedoubleSampling temperature for generation (0 = deterministic).
Returns
- DocumentQAResult<T>
The answer result.
AnswerQuestions(Tensor<T>, IEnumerable<string>)
Answers multiple questions about a document in a batch.
public IEnumerable<DocumentQAResult<T>> AnswerQuestions(Tensor<T> documentImage, IEnumerable<string> questions)
Parameters
documentImageTensor<T>The document image tensor.
questionsIEnumerable<string>The questions to answer.
Returns
- IEnumerable<DocumentQAResult<T>>
Answers for each question in order.
Remarks
Batching multiple questions is more efficient than calling AnswerQuestion repeatedly because the document encoding can be reused.
ApplyDefaultPostprocessing(Tensor<T>)
Applies Donut's industry-standard postprocessing: pass-through (autoregressive outputs are already final).
protected override Tensor<T> ApplyDefaultPostprocessing(Tensor<T> modelOutput)
Parameters
modelOutputTensor<T>
Returns
- Tensor<T>
ApplyDefaultPreprocessing(Tensor<T>)
Applies Donut's industry-standard preprocessing: normalize to [-1, 1].
protected override Tensor<T> ApplyDefaultPreprocessing(Tensor<T> rawImage)
Parameters
rawImageTensor<T>
Returns
- Tensor<T>
Remarks
Donut (Document Understanding Transformer) uses mean=0.5, std=0.5 normalization (NAVER paper). Expects large input images (2560x1920 typical).
CreateNewInstance()
Creates a new instance of the same type as this neural network.
protected override IFullModel<T, Tensor<T>, Tensor<T>> CreateNewInstance()
Returns
- IFullModel<T, Tensor<T>, Tensor<T>>
A new instance of the same neural network type.
Remarks
For Beginners: This creates a blank version of the same type of neural network.
It's used internally by methods like DeepCopy and Clone to create the right type of network before copying the data into it.
DeserializeNetworkSpecificData(BinaryReader)
Deserializes network-specific data that was not covered by the general deserialization process.
protected override void DeserializeNetworkSpecificData(BinaryReader reader)
Parameters
readerBinaryReaderThe BinaryReader to read the data from.
Remarks
This method is called at the end of the general deserialization process to allow derived classes to read any additional data specific to their implementation.
For Beginners: Continuing the suitcase analogy, this is like unpacking that special compartment. After the main deserialization method has unpacked the common items (layers, parameters), this method allows each specific type of neural network to unpack its own unique items that were stored during serialization.
Dispose(bool)
Disposes of resources used by this model.
protected override void Dispose(bool disposing)
Parameters
disposingboolTrue if disposing managed resources.
EncodeDocument(Tensor<T>)
Processes a document image and returns encoded features.
public Tensor<T> EncodeDocument(Tensor<T> documentImage)
Parameters
documentImageTensor<T>The document image tensor [batch, channels, height, width] or [channels, height, width].
Returns
- Tensor<T>
Encoded document features suitable for downstream tasks.
Remarks
For Beginners: This method converts a document image into a numerical representation (feature vector) that captures the document's content and structure. These features can then be used for tasks like classification, QA, or information extraction.
ExtractFields(Tensor<T>, IEnumerable<string>)
Extracts specific fields from a document using natural language prompts.
public Dictionary<string, DocumentQAResult<T>> ExtractFields(Tensor<T> documentImage, IEnumerable<string> fieldPrompts)
Parameters
documentImageTensor<T>The document image tensor.
fieldPromptsIEnumerable<string>Field names or extraction prompts (e.g., "invoice_number", "total_amount").
Returns
- Dictionary<string, DocumentQAResult<T>>
Dictionary mapping field names to their extracted values and confidence.
Remarks
For Beginners: This is a convenient way to extract multiple pieces of information at once. Instead of asking separate questions, you provide a list of field names and the model extracts all of them from the document.
GetModelMetadata()
Gets the metadata for this neural network model.
public override ModelMetadata<T> GetModelMetadata()
Returns
- ModelMetadata<T>
A ModelMetaData object containing information about the model.
GetModelSummary()
Gets a summary of the model architecture.
public string GetModelSummary()
Returns
- string
A string describing the model's architecture, parameters, and capabilities.
InitializeLayers()
Initializes the layers of the neural network based on the architecture.
protected override void InitializeLayers()
Remarks
For Beginners: This method sets up all the layers in your neural network according to the architecture you've defined. It's like assembling the parts of your network before you can use it.
ParseDocument(Tensor<T>, string)
Parses a document and returns structured output based on the document type.
public string ParseDocument(Tensor<T> documentImage, string documentType)
Parameters
documentImageTensor<T>The document image tensor.
documentTypestringThe type of document (e.g., "invoice", "receipt", "form").
Returns
- string
Parsed document content as structured text.
Predict(Tensor<T>)
Makes a prediction using the neural network.
public override Tensor<T> Predict(Tensor<T> input)
Parameters
inputTensor<T>The input data to process.
Returns
- Tensor<T>
The network's prediction.
Remarks
For Beginners: This is the main method you'll use to get results from your trained neural network. You provide some input data (like an image or text), and the network processes it through all its layers to produce an output (like a classification or prediction).
RecognizeText(Tensor<T>)
Performs full OCR on a document image.
public OCRResult<T> RecognizeText(Tensor<T> documentImage)
Parameters
documentImageTensor<T>The document image tensor.
Returns
- OCRResult<T>
OCR result with text, positions, and confidence scores.
RecognizeTextInRegion(Tensor<T>, Vector<T>)
Performs OCR on a specific region of the document.
public OCRResult<T> RecognizeTextInRegion(Tensor<T> documentImage, Vector<T> region)
Parameters
documentImageTensor<T>The document image tensor.
regionVector<T>The region to process as normalized coordinates [x1, y1, x2, y2] where values are 0-1.
Returns
- OCRResult<T>
OCR result for the specified region.
SerializeNetworkSpecificData(BinaryWriter)
Serializes network-specific data that is not covered by the general serialization process.
protected override void SerializeNetworkSpecificData(BinaryWriter writer)
Parameters
writerBinaryWriterThe BinaryWriter to write the data to.
Remarks
This method is called at the end of the general serialization process to allow derived classes to write any additional data specific to their implementation.
For Beginners: Think of this as packing a special compartment in your suitcase. While the main serialization method packs the common items (layers, parameters), this method allows each specific type of neural network to pack its own unique items that other networks might not have.
Train(Tensor<T>, Tensor<T>)
Trains the neural network on a single input-output pair.
public override void Train(Tensor<T> input, Tensor<T> expectedOutput)
Parameters
inputTensor<T>The input data.
expectedOutputTensor<T>The expected output for the given input.
Remarks
This method performs one training step on the neural network using the provided input and expected output. It updates the network's parameters to reduce the error between the network's prediction and the expected output.
For Beginners: This is how your neural network learns. You provide: - An input (what the network should process) - The expected output (what the correct answer should be)
The network then:
- Makes a prediction based on the input
- Compares its prediction to the expected output
- Calculates how wrong it was (the loss)
- Adjusts its internal values to do better next time
After training, you can get the loss value using the GetLastLoss() method to see how well the network is learning.
UpdateParameters(Vector<T>)
Updates the network's parameters with new values.
public override void UpdateParameters(Vector<T> gradients)
Parameters
gradientsVector<T>
Remarks
For Beginners: During training, a neural network's internal values (parameters) get adjusted to improve its performance. This method allows you to update all those values at once by providing a complete set of new parameters.
This is typically used by optimization algorithms that calculate better parameter values based on training data.
ValidateInputShape(Tensor<T>)
Validates that an input tensor has the correct shape for this model.
public void ValidateInputShape(Tensor<T> documentImage)
Parameters
documentImageTensor<T>The tensor to validate.
Exceptions
- ArgumentException
Thrown if the tensor shape is invalid.