Table of Contents

Class UDOP<T>

Namespace
AiDotNet.Document.VisionLanguage
Assembly
AiDotNet.dll

UDOP (Unifying Vision, Text, and Layout for Universal Document Processing) neural network.

public class UDOP<T> : DocumentNeuralNetworkBase<T>, INeuralNetworkModel<T>, INeuralNetwork<T>, IInterpretableModel<T>, IInputGradientComputable<T>, IDisposable, ILayoutDetector<T>, IDocumentQA<T>, IDocumentClassifier<T>, IDocumentModel<T>, IFullModel<T, Tensor<T>, Tensor<T>>, IModel<Tensor<T>, Tensor<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Tensor<T>, Tensor<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Tensor<T>, Tensor<T>>>, IGradientComputable<T, Tensor<T>, Tensor<T>>, IJitCompilable<T>

Type Parameters

T

The numeric type used for calculations.

Inheritance
UDOP<T>
Implements
IFullModel<T, Tensor<T>, Tensor<T>>
IModel<Tensor<T>, Tensor<T>, ModelMetadata<T>>
IParameterizable<T, Tensor<T>, Tensor<T>>
ICloneable<IFullModel<T, Tensor<T>, Tensor<T>>>
IGradientComputable<T, Tensor<T>, Tensor<T>>
Inherited Members
Extension Methods

Remarks

UDOP is a foundation model for document AI that unifies text, image, and layout modalities within a single encoder-decoder framework. It can perform multiple document tasks through task-specific prompting.

For Beginners: UDOP can handle many document tasks with one model: 1. Document classification 2. Information extraction (NER, key-value pairs) 3. Document question answering 4. Document layout analysis 5. Document generation

Example usage:

var model = new UDOP<float>(architecture);
var result = model.AnswerQuestion(documentImage, "What is the invoice total?");

Reference: "Unifying Vision, Text, and Layout for Universal Document Processing" (CVPR 2023) https://arxiv.org/abs/2212.02623

Constructors

UDOP(NeuralNetworkArchitecture<T>, ITokenizer?, int, int, int, int, int, int, int, int, IOptimizer<T, Tensor<T>, Tensor<T>>?, ILossFunction<T>?)

Creates a UDOP model using native layers for training and inference.

public UDOP(NeuralNetworkArchitecture<T> architecture, ITokenizer? tokenizer = null, int numClasses = 16, int imageSize = 224, int maxSequenceLength = 2048, int hiddenDim = 1024, int numEncoderLayers = 12, int numDecoderLayers = 12, int numHeads = 16, int vocabSize = 50000, IOptimizer<T, Tensor<T>, Tensor<T>>? optimizer = null, ILossFunction<T>? lossFunction = null)

Parameters

architecture NeuralNetworkArchitecture<T>
tokenizer ITokenizer
numClasses int
imageSize int
maxSequenceLength int
hiddenDim int
numEncoderLayers int
numDecoderLayers int
numHeads int
vocabSize int
optimizer IOptimizer<T, Tensor<T>, Tensor<T>>
lossFunction ILossFunction<T>

Remarks

Default Configuration (UDOP-Large from CVPR 2023): - Vision Transformer for image encoding - T5-style text encoder - Unified cross-modal encoder - T5-style decoder for generation - Hidden dimension: 1024 - Encoder/Decoder layers: 12 each

UDOP(NeuralNetworkArchitecture<T>, string, ITokenizer, int, int, int, int, int, int, int, int, IOptimizer<T, Tensor<T>, Tensor<T>>?, ILossFunction<T>?)

Creates a UDOP model using a pre-trained ONNX model for inference.

public UDOP(NeuralNetworkArchitecture<T> architecture, string onnxModelPath, ITokenizer tokenizer, int numClasses = 16, int imageSize = 224, int maxSequenceLength = 2048, int hiddenDim = 1024, int numEncoderLayers = 12, int numDecoderLayers = 12, int numHeads = 16, int vocabSize = 50000, IOptimizer<T, Tensor<T>, Tensor<T>>? optimizer = null, ILossFunction<T>? lossFunction = null)

Parameters

architecture NeuralNetworkArchitecture<T>
onnxModelPath string
tokenizer ITokenizer
numClasses int
imageSize int
maxSequenceLength int
hiddenDim int
numEncoderLayers int
numDecoderLayers int
numHeads int
vocabSize int
optimizer IOptimizer<T, Tensor<T>, Tensor<T>>
lossFunction ILossFunction<T>

Properties

AvailableCategories

Gets the available document classification categories.

public IReadOnlyList<string> AvailableCategories { get; }

Property Value

IReadOnlyList<string>

ExpectedImageSize

Gets the expected input image size (assumes square images).

public int ExpectedImageSize { get; }

Property Value

int

Remarks

Common values: 224 (ViT base), 384, 448, 512, 768, 1024. Input images will be resized to [ImageSize x ImageSize] before processing.

RequiresOCR

Gets whether this model requires OCR preprocessing.

public override bool RequiresOCR { get; }

Property Value

bool

Remarks

Layout-aware models (LayoutLM, etc.) require OCR to provide text and bounding boxes. OCR-free models (Donut, Pix2Struct) process raw pixels directly.

SupportedDocumentTypes

Gets the supported document types for this model.

public override DocumentType SupportedDocumentTypes { get; }

Property Value

DocumentType

SupportedElementTypes

Gets the layout element types this detector can identify.

public IReadOnlyList<LayoutElementType> SupportedElementTypes { get; }

Property Value

IReadOnlyList<LayoutElementType>

Methods

AnswerQuestion(Tensor<T>, string)

Answers a question about a document.

public DocumentQAResult<T> AnswerQuestion(Tensor<T> documentImage, string question)

Parameters

documentImage Tensor<T>

The document image tensor.

question string

The question to answer in natural language.

Returns

DocumentQAResult<T>

The answer with confidence and evidence information.

AnswerQuestion(Tensor<T>, string, int, double)

Answers a question with generation parameters.

public DocumentQAResult<T> AnswerQuestion(Tensor<T> documentImage, string question, int maxAnswerLength, double temperature = 0)

Parameters

documentImage Tensor<T>

The document image tensor.

question string

The question to answer.

maxAnswerLength int

Maximum length of the generated answer.

temperature double

Sampling temperature for generation (0 = deterministic).

Returns

DocumentQAResult<T>

The answer result.

AnswerQuestions(Tensor<T>, IEnumerable<string>)

Answers multiple questions about a document in a batch.

public IEnumerable<DocumentQAResult<T>> AnswerQuestions(Tensor<T> documentImage, IEnumerable<string> questions)

Parameters

documentImage Tensor<T>

The document image tensor.

questions IEnumerable<string>

The questions to answer.

Returns

IEnumerable<DocumentQAResult<T>>

Answers for each question in order.

Remarks

Batching multiple questions is more efficient than calling AnswerQuestion repeatedly because the document encoding can be reused.

ApplyDefaultPostprocessing(Tensor<T>)

Applies UDOP's industry-standard postprocessing: pass-through (unified outputs are already final).

protected override Tensor<T> ApplyDefaultPostprocessing(Tensor<T> modelOutput)

Parameters

modelOutput Tensor<T>

Returns

Tensor<T>

ApplyDefaultPreprocessing(Tensor<T>)

Applies UDOP's industry-standard preprocessing: ImageNet normalization.

protected override Tensor<T> ApplyDefaultPreprocessing(Tensor<T> rawImage)

Parameters

rawImage Tensor<T>

Returns

Tensor<T>

Remarks

UDOP (Unified Document Processing) uses ImageNet normalization with mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224, 0.225] (Microsoft paper).

ClassifyDocument(Tensor<T>)

Classifies a document image into predefined categories.

public DocumentClassificationResult<T> ClassifyDocument(Tensor<T> documentImage)

Parameters

documentImage Tensor<T>

The document image tensor.

Returns

DocumentClassificationResult<T>

Classification result with predicted category and confidence.

ClassifyDocument(Tensor<T>, int)

Classifies a document and returns top-K predictions.

public DocumentClassificationResult<T> ClassifyDocument(Tensor<T> documentImage, int topK)

Parameters

documentImage Tensor<T>

The document image tensor.

topK int

Number of top predictions to return.

Returns

DocumentClassificationResult<T>

Classification result with top-K predictions.

CreateNewInstance()

Creates a new instance of the same type as this neural network.

protected override IFullModel<T, Tensor<T>, Tensor<T>> CreateNewInstance()

Returns

IFullModel<T, Tensor<T>, Tensor<T>>

A new instance of the same neural network type.

Remarks

For Beginners: This creates a blank version of the same type of neural network.

It's used internally by methods like DeepCopy and Clone to create the right type of network before copying the data into it.

DeserializeNetworkSpecificData(BinaryReader)

Deserializes network-specific data that was not covered by the general deserialization process.

protected override void DeserializeNetworkSpecificData(BinaryReader reader)

Parameters

reader BinaryReader

The BinaryReader to read the data from.

Remarks

This method is called at the end of the general deserialization process to allow derived classes to read any additional data specific to their implementation.

For Beginners: Continuing the suitcase analogy, this is like unpacking that special compartment. After the main deserialization method has unpacked the common items (layers, parameters), this method allows each specific type of neural network to unpack its own unique items that were stored during serialization.

DetectLayout(Tensor<T>)

Detects layout regions in a document image.

public DocumentLayoutResult<T> DetectLayout(Tensor<T> documentImage)

Parameters

documentImage Tensor<T>

The document image tensor [batch, channels, height, width].

Returns

DocumentLayoutResult<T>

Layout detection result with regions and their types.

DetectLayout(Tensor<T>, double)

Detects layout regions with a specified confidence threshold.

public DocumentLayoutResult<T> DetectLayout(Tensor<T> documentImage, double confidenceThreshold)

Parameters

documentImage Tensor<T>

The document image tensor.

confidenceThreshold double

Minimum confidence for detected regions (0.0 to 1.0).

Returns

DocumentLayoutResult<T>

Filtered layout detection result.

Remarks

Higher thresholds return fewer but more confident detections. Lower thresholds return more detections but may include false positives.

Dispose(bool)

Disposes of resources used by this model.

protected override void Dispose(bool disposing)

Parameters

disposing bool

True if disposing managed resources.

EncodeDocument(Tensor<T>)

Processes a document image and returns encoded features.

public Tensor<T> EncodeDocument(Tensor<T> documentImage)

Parameters

documentImage Tensor<T>

The document image tensor [batch, channels, height, width] or [channels, height, width].

Returns

Tensor<T>

Encoded document features suitable for downstream tasks.

Remarks

For Beginners: This method converts a document image into a numerical representation (feature vector) that captures the document's content and structure. These features can then be used for tasks like classification, QA, or information extraction.

ExtractFields(Tensor<T>, IEnumerable<string>)

Extracts specific fields from a document using natural language prompts.

public Dictionary<string, DocumentQAResult<T>> ExtractFields(Tensor<T> documentImage, IEnumerable<string> fieldPrompts)

Parameters

documentImage Tensor<T>

The document image tensor.

fieldPrompts IEnumerable<string>

Field names or extraction prompts (e.g., "invoice_number", "total_amount").

Returns

Dictionary<string, DocumentQAResult<T>>

Dictionary mapping field names to their extracted values and confidence.

Remarks

For Beginners: This is a convenient way to extract multiple pieces of information at once. Instead of asking separate questions, you provide a list of field names and the model extracts all of them from the document.

GetModelMetadata()

Gets the metadata for this neural network model.

public override ModelMetadata<T> GetModelMetadata()

Returns

ModelMetadata<T>

A ModelMetaData object containing information about the model.

GetModelSummary()

Gets a summary of the model architecture.

public string GetModelSummary()

Returns

string

A string describing the model's architecture, parameters, and capabilities.

InitializeLayers()

Initializes the layers of the neural network based on the architecture.

protected override void InitializeLayers()

Remarks

For Beginners: This method sets up all the layers in your neural network according to the architecture you've defined. It's like assembling the parts of your network before you can use it.

Predict(Tensor<T>)

Makes a prediction using the neural network.

public override Tensor<T> Predict(Tensor<T> input)

Parameters

input Tensor<T>

The input data to process.

Returns

Tensor<T>

The network's prediction.

Remarks

For Beginners: This is the main method you'll use to get results from your trained neural network. You provide some input data (like an image or text), and the network processes it through all its layers to produce an output (like a classification or prediction).

SerializeNetworkSpecificData(BinaryWriter)

Serializes network-specific data that is not covered by the general serialization process.

protected override void SerializeNetworkSpecificData(BinaryWriter writer)

Parameters

writer BinaryWriter

The BinaryWriter to write the data to.

Remarks

This method is called at the end of the general serialization process to allow derived classes to write any additional data specific to their implementation.

For Beginners: Think of this as packing a special compartment in your suitcase. While the main serialization method packs the common items (layers, parameters), this method allows each specific type of neural network to pack its own unique items that other networks might not have.

Train(Tensor<T>, Tensor<T>)

Trains the neural network on a single input-output pair.

public override void Train(Tensor<T> input, Tensor<T> expectedOutput)

Parameters

input Tensor<T>

The input data.

expectedOutput Tensor<T>

The expected output for the given input.

Remarks

This method performs one training step on the neural network using the provided input and expected output. It updates the network's parameters to reduce the error between the network's prediction and the expected output.

For Beginners: This is how your neural network learns. You provide: - An input (what the network should process) - The expected output (what the correct answer should be)

The network then:

  1. Makes a prediction based on the input
  2. Compares its prediction to the expected output
  3. Calculates how wrong it was (the loss)
  4. Adjusts its internal values to do better next time

After training, you can get the loss value using the GetLastLoss() method to see how well the network is learning.

UpdateParameters(Vector<T>)

Updates the network's parameters with new values.

public override void UpdateParameters(Vector<T> gradients)

Parameters

gradients Vector<T>

Remarks

For Beginners: During training, a neural network's internal values (parameters) get adjusted to improve its performance. This method allows you to update all those values at once by providing a complete set of new parameters.

This is typically used by optimization algorithms that calculate better parameter values based on training data.

ValidateInputShape(Tensor<T>)

Validates that an input tensor has the correct shape for this model.

public void ValidateInputShape(Tensor<T> documentImage)

Parameters

documentImage Tensor<T>

The tensor to validate.

Exceptions

ArgumentException

Thrown if the tensor shape is invalid.