Class UDOP<T>
- Namespace
- AiDotNet.Document.VisionLanguage
- Assembly
- AiDotNet.dll
UDOP (Unifying Vision, Text, and Layout for Universal Document Processing) neural network.
public class UDOP<T> : DocumentNeuralNetworkBase<T>, INeuralNetworkModel<T>, INeuralNetwork<T>, IInterpretableModel<T>, IInputGradientComputable<T>, IDisposable, ILayoutDetector<T>, IDocumentQA<T>, IDocumentClassifier<T>, IDocumentModel<T>, IFullModel<T, Tensor<T>, Tensor<T>>, IModel<Tensor<T>, Tensor<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Tensor<T>, Tensor<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Tensor<T>, Tensor<T>>>, IGradientComputable<T, Tensor<T>, Tensor<T>>, IJitCompilable<T>
Type Parameters
TThe numeric type used for calculations.
- Inheritance
-
UDOP<T>
- Implements
-
IDocumentQA<T>
- Inherited Members
- Extension Methods
Remarks
UDOP is a foundation model for document AI that unifies text, image, and layout modalities within a single encoder-decoder framework. It can perform multiple document tasks through task-specific prompting.
For Beginners: UDOP can handle many document tasks with one model: 1. Document classification 2. Information extraction (NER, key-value pairs) 3. Document question answering 4. Document layout analysis 5. Document generation
Example usage:
var model = new UDOP<float>(architecture);
var result = model.AnswerQuestion(documentImage, "What is the invoice total?");
Reference: "Unifying Vision, Text, and Layout for Universal Document Processing" (CVPR 2023) https://arxiv.org/abs/2212.02623
Constructors
UDOP(NeuralNetworkArchitecture<T>, ITokenizer?, int, int, int, int, int, int, int, int, IOptimizer<T, Tensor<T>, Tensor<T>>?, ILossFunction<T>?)
Creates a UDOP model using native layers for training and inference.
public UDOP(NeuralNetworkArchitecture<T> architecture, ITokenizer? tokenizer = null, int numClasses = 16, int imageSize = 224, int maxSequenceLength = 2048, int hiddenDim = 1024, int numEncoderLayers = 12, int numDecoderLayers = 12, int numHeads = 16, int vocabSize = 50000, IOptimizer<T, Tensor<T>, Tensor<T>>? optimizer = null, ILossFunction<T>? lossFunction = null)
Parameters
architectureNeuralNetworkArchitecture<T>tokenizerITokenizernumClassesintimageSizeintmaxSequenceLengthinthiddenDimintnumEncoderLayersintnumDecoderLayersintnumHeadsintvocabSizeintoptimizerIOptimizer<T, Tensor<T>, Tensor<T>>lossFunctionILossFunction<T>
Remarks
Default Configuration (UDOP-Large from CVPR 2023): - Vision Transformer for image encoding - T5-style text encoder - Unified cross-modal encoder - T5-style decoder for generation - Hidden dimension: 1024 - Encoder/Decoder layers: 12 each
UDOP(NeuralNetworkArchitecture<T>, string, ITokenizer, int, int, int, int, int, int, int, int, IOptimizer<T, Tensor<T>, Tensor<T>>?, ILossFunction<T>?)
Creates a UDOP model using a pre-trained ONNX model for inference.
public UDOP(NeuralNetworkArchitecture<T> architecture, string onnxModelPath, ITokenizer tokenizer, int numClasses = 16, int imageSize = 224, int maxSequenceLength = 2048, int hiddenDim = 1024, int numEncoderLayers = 12, int numDecoderLayers = 12, int numHeads = 16, int vocabSize = 50000, IOptimizer<T, Tensor<T>, Tensor<T>>? optimizer = null, ILossFunction<T>? lossFunction = null)
Parameters
architectureNeuralNetworkArchitecture<T>onnxModelPathstringtokenizerITokenizernumClassesintimageSizeintmaxSequenceLengthinthiddenDimintnumEncoderLayersintnumDecoderLayersintnumHeadsintvocabSizeintoptimizerIOptimizer<T, Tensor<T>, Tensor<T>>lossFunctionILossFunction<T>
Properties
AvailableCategories
Gets the available document classification categories.
public IReadOnlyList<string> AvailableCategories { get; }
Property Value
ExpectedImageSize
Gets the expected input image size (assumes square images).
public int ExpectedImageSize { get; }
Property Value
Remarks
Common values: 224 (ViT base), 384, 448, 512, 768, 1024. Input images will be resized to [ImageSize x ImageSize] before processing.
RequiresOCR
Gets whether this model requires OCR preprocessing.
public override bool RequiresOCR { get; }
Property Value
Remarks
Layout-aware models (LayoutLM, etc.) require OCR to provide text and bounding boxes. OCR-free models (Donut, Pix2Struct) process raw pixels directly.
SupportedDocumentTypes
Gets the supported document types for this model.
public override DocumentType SupportedDocumentTypes { get; }
Property Value
SupportedElementTypes
Gets the layout element types this detector can identify.
public IReadOnlyList<LayoutElementType> SupportedElementTypes { get; }
Property Value
Methods
AnswerQuestion(Tensor<T>, string)
Answers a question about a document.
public DocumentQAResult<T> AnswerQuestion(Tensor<T> documentImage, string question)
Parameters
documentImageTensor<T>The document image tensor.
questionstringThe question to answer in natural language.
Returns
- DocumentQAResult<T>
The answer with confidence and evidence information.
AnswerQuestion(Tensor<T>, string, int, double)
Answers a question with generation parameters.
public DocumentQAResult<T> AnswerQuestion(Tensor<T> documentImage, string question, int maxAnswerLength, double temperature = 0)
Parameters
documentImageTensor<T>The document image tensor.
questionstringThe question to answer.
maxAnswerLengthintMaximum length of the generated answer.
temperaturedoubleSampling temperature for generation (0 = deterministic).
Returns
- DocumentQAResult<T>
The answer result.
AnswerQuestions(Tensor<T>, IEnumerable<string>)
Answers multiple questions about a document in a batch.
public IEnumerable<DocumentQAResult<T>> AnswerQuestions(Tensor<T> documentImage, IEnumerable<string> questions)
Parameters
documentImageTensor<T>The document image tensor.
questionsIEnumerable<string>The questions to answer.
Returns
- IEnumerable<DocumentQAResult<T>>
Answers for each question in order.
Remarks
Batching multiple questions is more efficient than calling AnswerQuestion repeatedly because the document encoding can be reused.
ApplyDefaultPostprocessing(Tensor<T>)
Applies UDOP's industry-standard postprocessing: pass-through (unified outputs are already final).
protected override Tensor<T> ApplyDefaultPostprocessing(Tensor<T> modelOutput)
Parameters
modelOutputTensor<T>
Returns
- Tensor<T>
ApplyDefaultPreprocessing(Tensor<T>)
Applies UDOP's industry-standard preprocessing: ImageNet normalization.
protected override Tensor<T> ApplyDefaultPreprocessing(Tensor<T> rawImage)
Parameters
rawImageTensor<T>
Returns
- Tensor<T>
Remarks
UDOP (Unified Document Processing) uses ImageNet normalization with mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224, 0.225] (Microsoft paper).
ClassifyDocument(Tensor<T>)
Classifies a document image into predefined categories.
public DocumentClassificationResult<T> ClassifyDocument(Tensor<T> documentImage)
Parameters
documentImageTensor<T>The document image tensor.
Returns
- DocumentClassificationResult<T>
Classification result with predicted category and confidence.
ClassifyDocument(Tensor<T>, int)
Classifies a document and returns top-K predictions.
public DocumentClassificationResult<T> ClassifyDocument(Tensor<T> documentImage, int topK)
Parameters
documentImageTensor<T>The document image tensor.
topKintNumber of top predictions to return.
Returns
- DocumentClassificationResult<T>
Classification result with top-K predictions.
CreateNewInstance()
Creates a new instance of the same type as this neural network.
protected override IFullModel<T, Tensor<T>, Tensor<T>> CreateNewInstance()
Returns
- IFullModel<T, Tensor<T>, Tensor<T>>
A new instance of the same neural network type.
Remarks
For Beginners: This creates a blank version of the same type of neural network.
It's used internally by methods like DeepCopy and Clone to create the right type of network before copying the data into it.
DeserializeNetworkSpecificData(BinaryReader)
Deserializes network-specific data that was not covered by the general deserialization process.
protected override void DeserializeNetworkSpecificData(BinaryReader reader)
Parameters
readerBinaryReaderThe BinaryReader to read the data from.
Remarks
This method is called at the end of the general deserialization process to allow derived classes to read any additional data specific to their implementation.
For Beginners: Continuing the suitcase analogy, this is like unpacking that special compartment. After the main deserialization method has unpacked the common items (layers, parameters), this method allows each specific type of neural network to unpack its own unique items that were stored during serialization.
DetectLayout(Tensor<T>)
Detects layout regions in a document image.
public DocumentLayoutResult<T> DetectLayout(Tensor<T> documentImage)
Parameters
documentImageTensor<T>The document image tensor [batch, channels, height, width].
Returns
- DocumentLayoutResult<T>
Layout detection result with regions and their types.
DetectLayout(Tensor<T>, double)
Detects layout regions with a specified confidence threshold.
public DocumentLayoutResult<T> DetectLayout(Tensor<T> documentImage, double confidenceThreshold)
Parameters
documentImageTensor<T>The document image tensor.
confidenceThresholddoubleMinimum confidence for detected regions (0.0 to 1.0).
Returns
- DocumentLayoutResult<T>
Filtered layout detection result.
Remarks
Higher thresholds return fewer but more confident detections. Lower thresholds return more detections but may include false positives.
Dispose(bool)
Disposes of resources used by this model.
protected override void Dispose(bool disposing)
Parameters
disposingboolTrue if disposing managed resources.
EncodeDocument(Tensor<T>)
Processes a document image and returns encoded features.
public Tensor<T> EncodeDocument(Tensor<T> documentImage)
Parameters
documentImageTensor<T>The document image tensor [batch, channels, height, width] or [channels, height, width].
Returns
- Tensor<T>
Encoded document features suitable for downstream tasks.
Remarks
For Beginners: This method converts a document image into a numerical representation (feature vector) that captures the document's content and structure. These features can then be used for tasks like classification, QA, or information extraction.
ExtractFields(Tensor<T>, IEnumerable<string>)
Extracts specific fields from a document using natural language prompts.
public Dictionary<string, DocumentQAResult<T>> ExtractFields(Tensor<T> documentImage, IEnumerable<string> fieldPrompts)
Parameters
documentImageTensor<T>The document image tensor.
fieldPromptsIEnumerable<string>Field names or extraction prompts (e.g., "invoice_number", "total_amount").
Returns
- Dictionary<string, DocumentQAResult<T>>
Dictionary mapping field names to their extracted values and confidence.
Remarks
For Beginners: This is a convenient way to extract multiple pieces of information at once. Instead of asking separate questions, you provide a list of field names and the model extracts all of them from the document.
GetModelMetadata()
Gets the metadata for this neural network model.
public override ModelMetadata<T> GetModelMetadata()
Returns
- ModelMetadata<T>
A ModelMetaData object containing information about the model.
GetModelSummary()
Gets a summary of the model architecture.
public string GetModelSummary()
Returns
- string
A string describing the model's architecture, parameters, and capabilities.
InitializeLayers()
Initializes the layers of the neural network based on the architecture.
protected override void InitializeLayers()
Remarks
For Beginners: This method sets up all the layers in your neural network according to the architecture you've defined. It's like assembling the parts of your network before you can use it.
Predict(Tensor<T>)
Makes a prediction using the neural network.
public override Tensor<T> Predict(Tensor<T> input)
Parameters
inputTensor<T>The input data to process.
Returns
- Tensor<T>
The network's prediction.
Remarks
For Beginners: This is the main method you'll use to get results from your trained neural network. You provide some input data (like an image or text), and the network processes it through all its layers to produce an output (like a classification or prediction).
SerializeNetworkSpecificData(BinaryWriter)
Serializes network-specific data that is not covered by the general serialization process.
protected override void SerializeNetworkSpecificData(BinaryWriter writer)
Parameters
writerBinaryWriterThe BinaryWriter to write the data to.
Remarks
This method is called at the end of the general serialization process to allow derived classes to write any additional data specific to their implementation.
For Beginners: Think of this as packing a special compartment in your suitcase. While the main serialization method packs the common items (layers, parameters), this method allows each specific type of neural network to pack its own unique items that other networks might not have.
Train(Tensor<T>, Tensor<T>)
Trains the neural network on a single input-output pair.
public override void Train(Tensor<T> input, Tensor<T> expectedOutput)
Parameters
inputTensor<T>The input data.
expectedOutputTensor<T>The expected output for the given input.
Remarks
This method performs one training step on the neural network using the provided input and expected output. It updates the network's parameters to reduce the error between the network's prediction and the expected output.
For Beginners: This is how your neural network learns. You provide: - An input (what the network should process) - The expected output (what the correct answer should be)
The network then:
- Makes a prediction based on the input
- Compares its prediction to the expected output
- Calculates how wrong it was (the loss)
- Adjusts its internal values to do better next time
After training, you can get the loss value using the GetLastLoss() method to see how well the network is learning.
UpdateParameters(Vector<T>)
Updates the network's parameters with new values.
public override void UpdateParameters(Vector<T> gradients)
Parameters
gradientsVector<T>
Remarks
For Beginners: During training, a neural network's internal values (parameters) get adjusted to improve its performance. This method allows you to update all those values at once by providing a complete set of new parameters.
This is typically used by optimization algorithms that calculate better parameter values based on training data.
ValidateInputShape(Tensor<T>)
Validates that an input tensor has the correct shape for this model.
public void ValidateInputShape(Tensor<T> documentImage)
Parameters
documentImageTensor<T>The tensor to validate.
Exceptions
- ArgumentException
Thrown if the tensor shape is invalid.