Interface IMultiLabelClassifier<T>
- Namespace
- AiDotNet.Interfaces
- Assembly
- AiDotNet.dll
Interface for multi-label classifiers that can predict multiple labels per sample.
public interface IMultiLabelClassifier<T> : IClassifier<T>, IFullModel<T, Matrix<T>, Vector<T>>, IModel<Matrix<T>, Vector<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Matrix<T>, Vector<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Matrix<T>, Vector<T>>>, IGradientComputable<T, Matrix<T>, Vector<T>>, IJitCompilable<T>
Type Parameters
TThe numeric data type used for calculations.
- Inherited Members
- Extension Methods
Remarks
Multi-label classification differs from multi-class classification: - Multi-class: One label per sample (mutually exclusive) - Multi-label: Zero, one, or many labels per sample (not mutually exclusive)
For Beginners: In multi-label classification, each sample can have multiple labels:
Examples:
- An article tagged with "politics", "economy", and "international"
- A movie classified as "action", "comedy", and "romance"
- An image containing "dog", "person", and "outdoor"
The output is a binary matrix where each column is a label indicator.
Properties
NumLabels
Gets the number of labels that can be predicted.
int NumLabels { get; }
Property Value
Methods
PredictMultiLabel(Matrix<T>)
Predicts binary indicators for each label for each sample.
Matrix<T> PredictMultiLabel(Matrix<T> input)
Parameters
inputMatrix<T>The input feature matrix.
Returns
- Matrix<T>
A binary matrix where each row is a sample and each column is a label indicator (1=present, 0=absent).
PredictMultiLabelProbabilities(Matrix<T>)
Predicts probabilities for each label for each sample.
Matrix<T> PredictMultiLabelProbabilities(Matrix<T> input)
Parameters
inputMatrix<T>The input feature matrix.
Returns
- Matrix<T>
A probability matrix where each row is a sample and each column is the probability of that label.