Class NagGpuConfig
- Namespace
- AiDotNet.Interfaces
- Assembly
- AiDotNet.dll
Configuration for Nesterov Accelerated Gradient (NAG) optimizer on GPU.
public class NagGpuConfig : IGpuOptimizerConfig
- Inheritance
-
NagGpuConfig
- Implements
- Inherited Members
Remarks
NAG is a variation of momentum that looks ahead by evaluating the gradient at the "lookahead" position. This often leads to better convergence.
For Beginners: NAG improves on regular momentum by being smarter about where to look. Instead of computing the gradient at the current position, it first moves in the direction of accumulated momentum, then computes the gradient. This "lookahead" helps it slow down before overshooting.
Constructors
NagGpuConfig(float, float, float, int)
Creates a new NAG GPU configuration.
public NagGpuConfig(float learningRate, float momentum = 0.9, float weightDecay = 0, int step = 0)
Parameters
learningRatefloatLearning rate for parameter updates.
momentumfloatMomentum coefficient (default 0.9).
weightDecayfloatWeight decay coefficient (default 0).
stepintCurrent optimization step.
Properties
LearningRate
Gets the learning rate for parameter updates.
public float LearningRate { get; init; }
Property Value
Momentum
Gets the momentum coefficient (typically 0.9).
public float Momentum { get; init; }
Property Value
OptimizerType
Gets the type of optimizer (SGD, Adam, AdamW, etc.).
public GpuOptimizerType OptimizerType { get; }
Property Value
Step
Gets the current optimization step (used for bias correction in Adam-family optimizers).
public int Step { get; init; }
Property Value
WeightDecay
Gets the weight decay (L2 regularization) coefficient.
public float WeightDecay { get; init; }
Property Value
Methods
ApplyUpdate(IDirectGpuBackend, IGpuBuffer, IGpuBuffer, GpuOptimizerState, int)
Applies the optimizer update to the given parameter buffer using its gradient.
public void ApplyUpdate(IDirectGpuBackend backend, IGpuBuffer param, IGpuBuffer gradient, GpuOptimizerState state, int size)
Parameters
backendIDirectGpuBackendThe GPU backend to execute the update.
paramIGpuBufferBuffer containing the parameters to update (modified in-place).
gradientIGpuBufferBuffer containing the gradients.
stateGpuOptimizerStateOptimizer state buffers (momentum, squared gradients, etc.).
sizeintNumber of parameters to update.
Remarks
For Beginners: This method applies the optimizer's update rule directly on the GPU. Each optimizer type (SGD, Adam, etc.) implements its own update logic using GPU kernels. The state parameter contains any auxiliary buffers needed (like velocity for SGD with momentum, or m/v buffers for Adam).
Design Note: Following the Open/Closed Principle, each optimizer config knows how to apply its own update, so adding new optimizers doesn't require modifying layer code.