Class RmsPropGpuConfig
- Namespace
- AiDotNet.Interfaces
- Assembly
- AiDotNet.dll
Configuration for RMSprop optimizer on GPU.
public class RmsPropGpuConfig : IGpuOptimizerConfig
- Inheritance
-
RmsPropGpuConfig
- Implements
- Inherited Members
Remarks
RMSprop maintains a moving average of squared gradients to normalize the gradient. This helps with non-stationary objectives and is particularly useful for RNNs.
For Beginners: RMSprop adapts the learning rate by dividing by a running average of gradient magnitudes. This helps training be more stable when gradients vary a lot in size - common in recurrent neural networks.
Constructors
RmsPropGpuConfig(float, float, float, float, int)
Creates a new RMSprop GPU configuration.
public RmsPropGpuConfig(float learningRate, float rho = 0.9, float epsilon = 1E-08, float weightDecay = 0, int step = 0)
Parameters
learningRatefloatLearning rate for parameter updates.
rhofloatDecay rate for moving average (default 0.9).
epsilonfloatNumerical stability constant (default 1e-8).
weightDecayfloatWeight decay coefficient (default 0).
stepintCurrent optimization step.
Properties
Epsilon
Gets the small constant for numerical stability (typically 1e-8).
public float Epsilon { get; init; }
Property Value
LearningRate
Gets the learning rate for parameter updates.
public float LearningRate { get; init; }
Property Value
OptimizerType
Gets the type of optimizer (SGD, Adam, AdamW, etc.).
public GpuOptimizerType OptimizerType { get; }
Property Value
Rho
Gets the decay rate for the moving average (typically 0.9).
public float Rho { get; init; }
Property Value
Step
Gets the current optimization step (used for bias correction in Adam-family optimizers).
public int Step { get; init; }
Property Value
WeightDecay
Gets the weight decay (L2 regularization) coefficient.
public float WeightDecay { get; init; }
Property Value
Methods
ApplyUpdate(IDirectGpuBackend, IGpuBuffer, IGpuBuffer, GpuOptimizerState, int)
Applies the optimizer update to the given parameter buffer using its gradient.
public void ApplyUpdate(IDirectGpuBackend backend, IGpuBuffer param, IGpuBuffer gradient, GpuOptimizerState state, int size)
Parameters
backendIDirectGpuBackendThe GPU backend to execute the update.
paramIGpuBufferBuffer containing the parameters to update (modified in-place).
gradientIGpuBufferBuffer containing the gradients.
stateGpuOptimizerStateOptimizer state buffers (momentum, squared gradients, etc.).
sizeintNumber of parameters to update.
Remarks
For Beginners: This method applies the optimizer's update rule directly on the GPU. Each optimizer type (SGD, Adam, etc.) implements its own update logic using GPU kernels. The state parameter contains any auxiliary buffers needed (like velocity for SGD with momentum, or m/v buffers for Adam).
Design Note: Following the Open/Closed Principle, each optimizer config knows how to apply its own update, so adding new optimizers doesn't require modifying layer code.