Table of Contents

Namespace AiDotNet.LossFunctions

Classes

BinaryCrossEntropyLoss<T>

Implements the Binary Cross Entropy loss function for binary classification problems.

CTCLossAdapter<T>

Provides an adapter for using CTCLoss within the LossFunctionBase framework.

CTCLoss<T>

Implements the Connectionist Temporal Classification (CTC) loss function for sequence-to-sequence learning.

CategoricalCrossEntropyLoss<T>

Implements the Categorical Cross Entropy loss function for multi-class classification.

CharbonnierLoss<T>

Implements the Charbonnier loss function, a smooth approximation of L1 loss.

ContrastiveLoss<T>

Implements the Contrastive Loss function for learning similarity metrics.

CosineSimilarityLoss<T>

Implements the Cosine Similarity Loss between two vectors.

CrossEntropyLoss<T>

Implements the Cross Entropy loss function for multi-class classification problems.

DiceLoss<T>

Implements the Dice loss function, commonly used for image segmentation tasks.

ElasticNetLoss<T>

Implements the Elastic Net Loss function, which combines Mean Squared Error with L1 and L2 regularization.

ExponentialLoss<T>

Implements the Exponential Loss function, commonly used in boosting algorithms.

FocalLoss<T>

Implements the Focal Loss function, which gives more weight to hard-to-classify examples.

HingeLoss<T>

Implements the Hinge loss function commonly used in support vector machines.

HuberLoss<T>

Implements the Huber loss function, which combines properties of both MSE and MAE.

JaccardLoss<T>

Implements the Jaccard loss function, commonly used for measuring dissimilarity between sets.

KullbackLeiblerDivergence<T>

Implements the Kullback-Leibler Divergence, a measure of how one probability distribution differs from another.

LogCoshLoss<T>

Implements the Log-Cosh loss function, a smooth approximation of Mean Absolute Error.

LossFunctionBase<T>

Base class for loss function implementations.

MarginLoss<T>

Implements the Margin loss function, specifically designed for Capsule Networks.

MeanAbsoluteErrorLoss<T>

Implements the Mean Absolute Error (MAE) loss function.

MeanBiasErrorLoss<T>

Implements the Mean Bias Error (MBE) loss function.

MeanSquaredErrorLoss<T>

Implements the Mean Squared Error (MSE) loss function.

ModifiedHuberLoss<T>

Implements the Modified Huber Loss function, a smoother version of the hinge loss.

NoiseContrastiveEstimationLoss<T>

Implements the Noise Contrastive Estimation (NCE) loss function for efficient training with large output spaces.

OrdinalRegressionLoss<T>

Implements the Ordinal Regression Loss function for predicting ordered categories.

PerceptualLoss<T>

Implements the Perceptual Loss function for comparing high-level features of images.

PoissonLoss<T>

Implements the Poisson loss function for count data modeling.

QuantileLoss<T>

Implements the Quantile loss function for quantile regression.

QuantumLoss<T>

Represents a quantum-specific loss function for quantum neural networks.

RealESRGANLoss<T>

Combined loss function for Real-ESRGAN super-resolution training.

RootMeanSquaredErrorLoss<T>

Implements the Root Mean Squared Error (RMSE) loss function.

RotationPredictionLoss<T>

Self-supervised loss function based on rotation prediction for images.

ScaleInvariantDepthLoss<T>

Scale-invariant depth loss function for depth estimation training.

SparseCategoricalCrossEntropyLoss<T>

Implements the Sparse Categorical Cross Entropy loss function for multi-class classification with integer labels.

SquaredHingeLoss<T>

Implements the Squared Hinge Loss function for binary classification problems.

TripletLoss<T>

Implements the Triplet Loss function for learning similarity embeddings.

WassersteinLoss<T>

Implements the Wasserstein loss function used in Wasserstein Generative Adversarial Networks (WGAN).

WeightedCrossEntropyLoss<T>

Implements the Weighted Cross Entropy loss function for classification problems with uneven class importance.