Table of Contents

Namespace AiDotNet.MetaLearning.Algorithms

Classes

ANILAlgorithm<T, TInput, TOutput>

Implementation of Almost No Inner Loop (ANIL) meta-learning algorithm.

BOILAlgorithm<T, TInput, TOutput>

Implementation of Body Only Inner Loop (BOIL) meta-learning algorithm.

CNAPAlgorithm<T, TInput, TOutput>

Implementation of Conditional Neural Adaptive Processes (CNAP) for meta-learning.

ExternalMemory<T>

External memory matrix for MANN.

GNNMetaAlgorithm<T, TInput, TOutput>

Implementation of Graph Neural Network-based Meta-learning.

LEOAlgorithm<T, TInput, TOutput>

Implementation of Latent Embedding Optimization (LEO) meta-learning algorithm.

LSTMNTMController<T, TInput, TOutput>

LSTM-based NTM controller implementation with learnable parameters.

MAMLAlgorithm<T, TInput, TOutput>

Implementation of the MAML (Model-Agnostic Meta-Learning) algorithm.

MANNAlgorithm<T, TInput, TOutput>

Implementation of Memory-Augmented Neural Networks (MANN) for meta-learning.

MANNMemoryStatistics

Memory statistics tracking for MANN.

MANNModel<T, TInput, TOutput>

MANN model for inference with external memory.

MLPNTMController<T, TInput, TOutput>

MLP-based NTM controller implementation with learnable parameters.

MatchingNetworksAlgorithm<T, TInput, TOutput>

Implementation of Matching Networks for few-shot learning.

MatchingNetworksModel<T, TInput, TOutput>

Matching Networks model for inference.

MetaOptNetAlgorithm<T, TInput, TOutput>

Implementation of Meta-learning with Differentiable Convex Optimization (MetaOptNet) algorithm.

MetaSGDAdaptedModel<T, TInput, TOutput>

Wrapper model for Meta-SGD adapted models that includes the per-parameter optimizer.

MetaSGDAlgorithm<T, TInput, TOutput>

Implementation of Meta-SGD (Meta Stochastic Gradient Descent) algorithm.

NTMAlgorithm<T, TInput, TOutput>

Implementation of Neural Turing Machine (NTM) for meta-learning.

NTMMemory<T>

External memory matrix for Neural Turing Machine.

NTMModel<T, TInput, TOutput>

NTM model for inference with persistent memory.

NTMReadHead<T>

NTM read head for content-based addressing.

NTMWriteHead<T>

NTM write head for content-based addressing.

PerParameterOptimizer<T, TInput, TOutput>

Per-parameter optimizer for Meta-SGD that learns individual optimization coefficients.

ProtoNetsAlgorithm<T, TInput, TOutput>

Implementation of Prototypical Networks (ProtoNets) algorithm for few-shot learning.

PrototypicalModel<T, TInput, TOutput>

Prototypical model for few-shot classification.

RelationNetworkAlgorithm<T, TInput, TOutput>

Implementation of Relation Networks algorithm for few-shot learning.

ReptileAlgorithm<T, TInput, TOutput>

Implementation of the Reptile meta-learning algorithm.

SEALAlgorithm<T, TInput, TOutput>

Implementation of the SEAL (Sample-Efficient Adaptive Learning) meta-learning algorithm.

TADAMAlgorithm<T, TInput, TOutput>

Implementation of Task-Dependent Adaptive Metric (TADAM) algorithm for few-shot learning.

iMAMLAlgorithm<T, TInput, TOutput>

Implementation of the iMAML (Implicit Model-Agnostic Meta-Learning) algorithm.

Interfaces

IMetaLearningAlgorithm<T, TInput, TOutput>
INTMController<T>

Interface for NTM controller.