Table of Contents

Namespace AiDotNet.MetaLearning.Options

Classes

ANILOptions<T, TInput, TOutput>

Configuration options for Almost No Inner Loop (ANIL) algorithm.

BOILOptions<T, TInput, TOutput>

Configuration options for Body Only Inner Loop (BOIL) algorithm.

CNAPOptions<T, TInput, TOutput>

Configuration options for the Conditional Neural Adaptive Processes (CNAP) algorithm.

GNNMetaOptions<T, TInput, TOutput>

Configuration options for the Graph Neural Network Meta-learning algorithm.

LEOOptions<T, TInput, TOutput>

Configuration options for Latent Embedding Optimization (LEO) algorithm.

MAMLOptions<T, TInput, TOutput>

Configuration options for MAML (Model-Agnostic Meta-Learning) algorithm.

MANNOptions<T, TInput, TOutput>

Configuration options for Memory-Augmented Neural Networks (MANN) algorithm.

MatchingNetworksOptions<T, TInput, TOutput>

Configuration options for Matching Networks algorithm.

MetaOptNetOptions<T, TInput, TOutput>

Configuration options for Meta-learning with Differentiable Convex Optimization (MetaOptNet) algorithm.

MetaSGDOptions<T, TInput, TOutput>

Configuration options for the Meta-SGD (Meta Stochastic Gradient Descent) algorithm.

NTMOptions<T, TInput, TOutput>

Configuration options for Neural Turing Machine (NTM) algorithm.

ProtoNetsOptions<T, TInput, TOutput>

Configuration options for Prototypical Networks (ProtoNets) algorithm.

RelationNetworkOptions<T, TInput, TOutput>

Configuration options for Relation Networks algorithm.

ReptileOptions<T, TInput, TOutput>

Configuration options for the Reptile meta-learning algorithm.

SEALOptions<T, TInput, TOutput>

Configuration options for the SEAL (Sample-Efficient Adaptive Learning) meta-learning algorithm.

TADAMOptions<T, TInput, TOutput>

Configuration options for Task-Dependent Adaptive Metric (TADAM) algorithm.

iMAMLOptions<T, TInput, TOutput>

Configuration options for iMAML (Implicit Model-Agnostic Meta-Learning) algorithm.

Enums

FastWeightApplicationMode

Specifies how fast weights are applied to modify the base model.

GNNAggregationType

Specifies how nodes are aggregated to form graph-level representations.

MatchingNetworksAttentionFunction

Attention function types for Matching Networks.

MetaSGDLearningRateInitialization

Learning rate initialization strategies for Meta-SGD.

MetaSGDLearningRateScheduleType

Learning rate schedule types for Meta-SGD meta-training.

MetaSGDUpdateRuleType

Update rule types for Meta-SGD per-parameter optimization.

NTMControllerType

Controller type for Neural Turing Machine.

NTMMemoryInitialization

Memory initialization strategies for NTM.

ProtoNetsDistanceFunction

Distance functions supported by Prototypical Networks for measuring similarity between embeddings.

SEALAdaptiveLearningRateMode

Specifies the mode for computing adaptive learning rates in SEAL.

TaskSimilarityMetric

Specifies how task similarity is computed for building the task graph.