Table of Contents

Namespace AiDotNet.ModelCompression

Classes

CompressionAnalyzer<T>

Analyzes model weights to determine optimal compression strategies.

CompressionMetrics<T>

Provides metrics and statistics for model compression operations.

CompressionResult<T>

Result of a compression operation.

DeepCompressionMetadata<T>

Metadata for Deep Compression containing information from all three stages.

DeepCompressionStats

Statistics about Deep Compression performance.

DeepCompression<T>

Implements the Deep Compression algorithm from Han et al. (2015).

HuffmanEncodingCompression<T>

Implements Huffman encoding compression for model weights using variable-length encoding.

HuffmanEncodingMetadata<T>

Metadata for Huffman encoding compression.

HuffmanNode<T>

Represents a node in the Huffman tree.

HybridCompressionMetadata

Legacy non-generic metadata for backward compatibility.

HybridCompressionMetadata<T>

Metadata for hybrid compression combining clustering and Huffman encoding.

HybridHuffmanClusteringCompression<T>
LowRankFactorizationCompression<T>

Implements Low-Rank Factorization compression using SVD-like decomposition.

LowRankFactorizationMetadata<T>

Metadata for Low-Rank Factorization compression.

MatrixCompressionMetadata<T>

Metadata for matrix compression operations that wraps the underlying vector compression metadata.

ModelCompressionBase<T>

Provides a base implementation for model compression techniques used to reduce model size while preserving accuracy.

ProductQuantizationCompression<T>

Implements Product Quantization (PQ) compression for model weights.

ProductQuantizationMetadata<T>

Metadata for Product Quantization compression.

SparseCompressionResult<T>

Result of sparse compression operation.

SparsePruningCompression<T>

Implements sparse pruning compression by zeroing out small-magnitude weights.

SparsePruningMetadata<T>

Metadata for sparse pruning compression.

TensorCompressionMetadata<T>

Metadata for N-dimensional tensor compression operations that wraps the underlying vector compression metadata.

WeightAnalysisResult<T>

Analysis results for model weights to guide compression decisions.

WeightClusteringCompression<T>

Implements weight clustering compression using K-means clustering to group similar weights.

WeightClusteringMetadata<T>

Metadata for weight clustering compression.

Enums

SparseFormat

Sparse storage formats.