Class AudioVisualCorrespondenceNetwork<T>
- Namespace
- AiDotNet.NeuralNetworks
- Assembly
- AiDotNet.dll
Audio-visual correspondence learning network for cross-modal understanding.
public class AudioVisualCorrespondenceNetwork<T> : NeuralNetworkBase<T>, INeuralNetworkModel<T>, INeuralNetwork<T>, IFullModel<T, Tensor<T>, Tensor<T>>, IModel<Tensor<T>, Tensor<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Tensor<T>, Tensor<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Tensor<T>, Tensor<T>>>, IGradientComputable<T, Tensor<T>, Tensor<T>>, IJitCompilable<T>, IInterpretableModel<T>, IInputGradientComputable<T>, IDisposable, IAudioVisualCorrespondenceModel<T>
Type Parameters
TThe numeric type used for calculations.
- Inheritance
-
AudioVisualCorrespondenceNetwork<T>
- Implements
- Inherited Members
- Extension Methods
Remarks
This network learns correspondences between audio and visual modalities, enabling sound source localization, audio-visual retrieval, and scene understanding.
Constructors
AudioVisualCorrespondenceNetwork(NeuralNetworkArchitecture<T>, int, int, double, int, IGradientBasedOptimizer<T, Tensor<T>, Tensor<T>>?, ILossFunction<T>?)
Creates a new audio-visual correspondence network.
public AudioVisualCorrespondenceNetwork(NeuralNetworkArchitecture<T> architecture, int embeddingDimension = 512, int audioSampleRate = 16000, double videoFrameRate = 25, int numEncoderLayers = 6, IGradientBasedOptimizer<T, Tensor<T>, Tensor<T>>? optimizer = null, ILossFunction<T>? lossFunction = null)
Parameters
architectureNeuralNetworkArchitecture<T>Network architecture configuration.
embeddingDimensionintDimension of shared embedding space.
audioSampleRateintExpected audio sample rate.
videoFrameRatedoubleExpected video frame rate.
numEncoderLayersintNumber of encoder layers per modality.
optimizerIGradientBasedOptimizer<T, Tensor<T>, Tensor<T>>Gradient-based optimizer for training.
lossFunctionILossFunction<T>Loss function for training.
Properties
AudioSampleRate
Gets the expected audio sample rate.
public int AudioSampleRate { get; }
Property Value
EmbeddingDimension
Gets the embedding dimension for audio-visual features.
public int EmbeddingDimension { get; }
Property Value
ParameterCount
Gets the total number of parameters in the model.
public override int ParameterCount { get; }
Property Value
Remarks
For Beginners: This tells you how many adjustable values (weights and biases) your neural network has. More complex networks typically have more parameters and can learn more complex patterns, but also require more data to train effectively. This is part of the IFullModel interface for consistency with other model types.
Performance: This property uses caching to avoid recomputing the sum on every access. The cache is invalidated when layers are modified.
VideoFrameRate
Gets the expected video frame rate.
public double VideoFrameRate { get; }
Property Value
Methods
CheckSynchronization(Tensor<T>, IEnumerable<Tensor<T>>)
Checks audio-visual synchronization.
public (double OffsetSeconds, T Confidence) CheckSynchronization(Tensor<T> audioWaveform, IEnumerable<Tensor<T>> frames)
Parameters
audioWaveformTensor<T>Audio waveform.
framesIEnumerable<Tensor<T>>Video frames.
Returns
- (double OffsetSeconds, T Confidence)
Sync offset in seconds (positive = audio ahead, negative = audio behind) and confidence.
ClassifyScene(Tensor<T>, IEnumerable<Tensor<T>>, IEnumerable<string>)
Classifies audio-visual scenes.
public Dictionary<string, T> ClassifyScene(Tensor<T> audioWaveform, IEnumerable<Tensor<T>> frames, IEnumerable<string> sceneLabels)
Parameters
audioWaveformTensor<T>Audio waveform.
framesIEnumerable<Tensor<T>>Video frames.
sceneLabelsIEnumerable<string>Possible scene labels.
Returns
- Dictionary<string, T>
Classification probabilities.
ComputeCorrespondence(Tensor<T>, IEnumerable<Tensor<T>>)
Computes audio-visual correspondence score.
public T ComputeCorrespondence(Tensor<T> audioWaveform, IEnumerable<Tensor<T>> frames)
Parameters
audioWaveformTensor<T>Audio waveform.
framesIEnumerable<Tensor<T>>Video frames.
Returns
- T
Correspondence score (higher = better match).
CreateNewInstance()
Creates a new instance of the same type as this neural network.
protected override IFullModel<T, Tensor<T>, Tensor<T>> CreateNewInstance()
Returns
- IFullModel<T, Tensor<T>, Tensor<T>>
A new instance of the same neural network type.
Remarks
For Beginners: This creates a blank version of the same type of neural network.
It's used internally by methods like DeepCopy and Clone to create the right type of network before copying the data into it.
DeepCopy()
Creates a deep copy of the neural network.
public override IFullModel<T, Tensor<T>, Tensor<T>> DeepCopy()
Returns
- IFullModel<T, Tensor<T>, Tensor<T>>
A new instance that is a deep copy of this neural network.
Remarks
This method creates a complete independent copy of the network, including all layers and their parameters. It uses serialization and deserialization to ensure a true deep copy.
For Beginners: This creates a completely independent duplicate of your neural network.
Think of it like creating an exact clone of your network where:
- The copy has the same structure (layers, connections)
- The copy has the same learned parameters (weights, biases)
- Changes to one network don't affect the other
This is useful when you want to:
- Experiment with modifications without risking your original network
- Create multiple variations of a model
- Save a snapshot of your model at a particular point in training
DescribeExpectedAudio(IEnumerable<Tensor<T>>)
Generates audio description from visual content.
public string DescribeExpectedAudio(IEnumerable<Tensor<T>> frames)
Parameters
framesIEnumerable<Tensor<T>>Video frames.
Returns
- string
Description of expected sounds.
DeserializeNetworkSpecificData(BinaryReader)
Deserializes network-specific data that was not covered by the general deserialization process.
protected override void DeserializeNetworkSpecificData(BinaryReader reader)
Parameters
readerBinaryReaderThe BinaryReader to read the data from.
Remarks
This method is called at the end of the general deserialization process to allow derived classes to read any additional data specific to their implementation.
For Beginners: Continuing the suitcase analogy, this is like unpacking that special compartment. After the main deserialization method has unpacked the common items (layers, parameters), this method allows each specific type of neural network to unpack its own unique items that were stored during serialization.
GetAudioEmbedding(Tensor<T>, int)
Computes audio embedding from waveform.
public Vector<T> GetAudioEmbedding(Tensor<T> audioWaveform, int sampleRate)
Parameters
audioWaveformTensor<T>Audio waveform tensor.
sampleRateintSample rate of the audio.
Returns
- Vector<T>
Normalized audio embedding.
GetModelMetadata()
Gets the metadata for this neural network model.
public override ModelMetadata<T> GetModelMetadata()
Returns
- ModelMetadata<T>
A ModelMetaData object containing information about the model.
GetParameters()
Gets all trainable parameters of the network as a single vector.
public override Vector<T> GetParameters()
Returns
- Vector<T>
A vector containing all parameters of the network.
Remarks
For Beginners: Neural networks learn by adjusting their "parameters" (also called weights and biases). This method collects all those adjustable values into a single list so they can be updated during training.
GetVisualEmbedding(IEnumerable<Tensor<T>>)
Computes visual embedding from video frames.
public Vector<T> GetVisualEmbedding(IEnumerable<Tensor<T>> frames)
Parameters
framesIEnumerable<Tensor<T>>Sequence of video frames.
Returns
- Vector<T>
Normalized visual embedding.
InitializeLayers()
Initializes the layers of the neural network based on the architecture.
protected override void InitializeLayers()
Remarks
For Beginners: This method sets up all the layers in your neural network according to the architecture you've defined. It's like assembling the parts of your network before you can use it.
LearnCorrespondence(IEnumerable<Tensor<T>>, IEnumerable<IEnumerable<Tensor<T>>>, int)
Learns correspondence from paired audio-visual data.
public void LearnCorrespondence(IEnumerable<Tensor<T>> audioSamples, IEnumerable<IEnumerable<Tensor<T>>> visualSamples, int epochs = 10)
Parameters
audioSamplesIEnumerable<Tensor<T>>Audio samples.
visualSamplesIEnumerable<IEnumerable<Tensor<T>>>Corresponding visual samples.
epochsintTraining epochs.
LocalizeSoundSource(Tensor<T>, IEnumerable<Tensor<T>>)
Localizes sound sources in video frames.
public IEnumerable<Tensor<T>> LocalizeSoundSource(Tensor<T> audioWaveform, IEnumerable<Tensor<T>> frames)
Parameters
audioWaveformTensor<T>Audio waveform.
framesIEnumerable<Tensor<T>>Video frames.
Returns
- IEnumerable<Tensor<T>>
Attention maps showing sound source locations for each frame.
Remarks
For Beginners: Find where sounds come from in images!
Returns a "heat map" for each frame showing which regions are most likely producing the sound we hear.
Predict(Tensor<T>)
Makes a prediction using the neural network.
public override Tensor<T> Predict(Tensor<T> input)
Parameters
inputTensor<T>The input data to process.
Returns
- Tensor<T>
The network's prediction.
Remarks
For Beginners: This is the main method you'll use to get results from your trained neural network. You provide some input data (like an image or text), and the network processes it through all its layers to produce an output (like a classification or prediction).
RetrieveAudioFromVisuals(IEnumerable<Tensor<T>>, IEnumerable<Vector<T>>, int)
Retrieves audio content matching visual input.
public IEnumerable<(int Index, T Score)> RetrieveAudioFromVisuals(IEnumerable<Tensor<T>> frames, IEnumerable<Vector<T>> audioDatabase, int topK = 10)
Parameters
framesIEnumerable<Tensor<T>>Query video frames.
audioDatabaseIEnumerable<Vector<T>>Database of audio embeddings.
topKintNumber of results.
Returns
- IEnumerable<(int Index, T Score)>
Indices and scores of matching audio.
RetrieveVisualsFromAudio(Tensor<T>, IEnumerable<Vector<T>>, int)
Retrieves visual content matching audio.
public IEnumerable<(int Index, T Score)> RetrieveVisualsFromAudio(Tensor<T> audioWaveform, IEnumerable<Vector<T>> visualDatabase, int topK = 10)
Parameters
audioWaveformTensor<T>Query audio.
visualDatabaseIEnumerable<Vector<T>>Database of visual embeddings.
topKintNumber of results.
Returns
- IEnumerable<(int Index, T Score)>
Indices and scores of matching visuals.
SeparateAudioByVisual(Tensor<T>, Tensor<T>)
Separates audio sources based on visual guidance.
public Tensor<T> SeparateAudioByVisual(Tensor<T> mixedAudio, Tensor<T> targetVisual)
Parameters
mixedAudioTensor<T>Mixed audio waveform.
targetVisualTensor<T>Visual of the target sound source.
Returns
- Tensor<T>
Separated audio for the target source.
Remarks
Uses visual information to guide audio source separation. For example, given a video of two people talking and pointing at one person, extracts just that person's voice.
SerializeNetworkSpecificData(BinaryWriter)
Serializes network-specific data that is not covered by the general serialization process.
protected override void SerializeNetworkSpecificData(BinaryWriter writer)
Parameters
writerBinaryWriterThe BinaryWriter to write the data to.
Remarks
This method is called at the end of the general serialization process to allow derived classes to write any additional data specific to their implementation.
For Beginners: Think of this as packing a special compartment in your suitcase. While the main serialization method packs the common items (layers, parameters), this method allows each specific type of neural network to pack its own unique items that other networks might not have.
SetParameters(Vector<T>)
Sets the parameters of the neural network.
public override void SetParameters(Vector<T> parameters)
Parameters
parametersVector<T>The parameters to set.
Remarks
This method distributes the parameters to all layers in the network. The parameters should be in the same format as returned by GetParameters.
Train(Tensor<T>, Tensor<T>)
Trains the neural network on a single input-output pair.
public override void Train(Tensor<T> input, Tensor<T> expectedOutput)
Parameters
inputTensor<T>The input data.
expectedOutputTensor<T>The expected output for the given input.
Remarks
This method performs one training step on the neural network using the provided input and expected output. It updates the network's parameters to reduce the error between the network's prediction and the expected output.
For Beginners: This is how your neural network learns. You provide: - An input (what the network should process) - The expected output (what the correct answer should be)
The network then:
- Makes a prediction based on the input
- Compares its prediction to the expected output
- Calculates how wrong it was (the loss)
- Adjusts its internal values to do better next time
After training, you can get the loss value using the GetLastLoss() method to see how well the network is learning.
UpdateParameters(Vector<T>)
Updates the network's parameters with new values.
public override void UpdateParameters(Vector<T> gradients)
Parameters
gradientsVector<T>
Remarks
For Beginners: During training, a neural network's internal values (parameters) get adjusted to improve its performance. This method allows you to update all those values at once by providing a complete set of new parameters.
This is typically used by optimization algorithms that calculate better parameter values based on training data.