Table of Contents

Class ExpectedSARSAAgent<T>

Namespace
AiDotNet.ReinforcementLearning.Agents.ExpectedSARSA
Assembly
AiDotNet.dll

Expected SARSA agent using tabular methods.

public class ExpectedSARSAAgent<T> : ReinforcementLearningAgentBase<T>, IRLAgent<T>, IFullModel<T, Vector<T>, Vector<T>>, IModel<Vector<T>, Vector<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Vector<T>, Vector<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Vector<T>, Vector<T>>>, IGradientComputable<T, Vector<T>, Vector<T>>, IJitCompilable<T>, IDisposable

Type Parameters

T

The numeric type used for calculations.

Inheritance
ExpectedSARSAAgent<T>
Implements
IFullModel<T, Vector<T>, Vector<T>>
IModel<Vector<T>, Vector<T>, ModelMetadata<T>>
IParameterizable<T, Vector<T>, Vector<T>>
ICloneable<IFullModel<T, Vector<T>, Vector<T>>>
IGradientComputable<T, Vector<T>, Vector<T>>
Inherited Members
Extension Methods

Remarks

Expected SARSA is a TD control algorithm that uses the expected value under the current policy instead of sampling the next action.

For Beginners: Expected SARSA is like SARSA but instead of using the actual next action, it uses the average Q-value weighted by the probability of taking each action. This reduces variance compared to SARSA.

Update: Q(s,a) ← Q(s,a) + α[r + γ Σ π(a'|s')Q(s',a') - Q(s,a)]

Benefits over SARSA:

  • Lower Variance: Averages over actions instead of sampling
  • Off-Policy Learning: Can learn optimal policy while exploring
  • Better Performance: Often converges faster than SARSA

Famous for: Van Seijen et al. 2009, bridging SARSA and Q-Learning

Constructors

ExpectedSARSAAgent(ExpectedSARSAOptions<T>)

public ExpectedSARSAAgent(ExpectedSARSAOptions<T> options)

Parameters

options ExpectedSARSAOptions<T>

Properties

FeatureCount

Gets the number of input features (state dimensions).

public override int FeatureCount { get; }

Property Value

int

ParameterCount

Gets the number of parameters in the agent.

public override int ParameterCount { get; }

Property Value

int

Remarks

Deep RL agents return parameter counts from neural networks. Classical RL agents (tabular, linear) may have different implementations.

Methods

ApplyGradients(Vector<T>, T)

Applies gradients to update the agent.

public override void ApplyGradients(Vector<T> gradients, T learningRate)

Parameters

gradients Vector<T>
learningRate T

Clone()

Clones the agent.

public override IFullModel<T, Vector<T>, Vector<T>> Clone()

Returns

IFullModel<T, Vector<T>, Vector<T>>

ComputeGradients(Vector<T>, Vector<T>, ILossFunction<T>?)

Computes gradients for the agent.

public override Vector<T> ComputeGradients(Vector<T> input, Vector<T> target, ILossFunction<T>? lossFunction = null)

Parameters

input Vector<T>
target Vector<T>
lossFunction ILossFunction<T>

Returns

Vector<T>

Deserialize(byte[])

Deserializes the agent from bytes.

public override void Deserialize(byte[] data)

Parameters

data byte[]

GetModelMetadata()

Gets model metadata.

public override ModelMetadata<T> GetModelMetadata()

Returns

ModelMetadata<T>

GetParameters()

Gets the agent's parameters.

public override Vector<T> GetParameters()

Returns

Vector<T>

LoadModel(string)

Loads the agent's state from a file.

public override void LoadModel(string filepath)

Parameters

filepath string

Path to load the agent from.

SaveModel(string)

Saves the agent's state to a file.

public override void SaveModel(string filepath)

Parameters

filepath string

Path to save the agent.

SelectAction(Vector<T>, bool)

Selects an action given the current state observation.

public override Vector<T> SelectAction(Vector<T> state, bool training = true)

Parameters

state Vector<T>

The current state observation as a Vector.

training bool

Whether the agent is in training mode (affects exploration).

Returns

Vector<T>

Action as a Vector (can be discrete or continuous).

Serialize()

Serializes the agent to bytes.

public override byte[] Serialize()

Returns

byte[]

SetParameters(Vector<T>)

Sets the agent's parameters.

public override void SetParameters(Vector<T> parameters)

Parameters

parameters Vector<T>

StoreExperience(Vector<T>, Vector<T>, T, Vector<T>, bool)

Stores an experience tuple for later learning.

public override void StoreExperience(Vector<T> state, Vector<T> action, T reward, Vector<T> nextState, bool done)

Parameters

state Vector<T>

The state before action.

action Vector<T>

The action taken.

reward T

The reward received.

nextState Vector<T>

The state after action.

done bool

Whether the episode terminated.

Train()

Performs one training step, updating the agent's policy/value function.

public override T Train()

Returns

T

The training loss for monitoring.