Class ExpectedSARSAAgent<T>
- Namespace
- AiDotNet.ReinforcementLearning.Agents.ExpectedSARSA
- Assembly
- AiDotNet.dll
Expected SARSA agent using tabular methods.
public class ExpectedSARSAAgent<T> : ReinforcementLearningAgentBase<T>, IRLAgent<T>, IFullModel<T, Vector<T>, Vector<T>>, IModel<Vector<T>, Vector<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Vector<T>, Vector<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Vector<T>, Vector<T>>>, IGradientComputable<T, Vector<T>, Vector<T>>, IJitCompilable<T>, IDisposable
Type Parameters
TThe numeric type used for calculations.
- Inheritance
-
ExpectedSARSAAgent<T>
- Implements
-
IRLAgent<T>
- Inherited Members
- Extension Methods
Remarks
Expected SARSA is a TD control algorithm that uses the expected value under the current policy instead of sampling the next action.
For Beginners: Expected SARSA is like SARSA but instead of using the actual next action, it uses the average Q-value weighted by the probability of taking each action. This reduces variance compared to SARSA.
Update: Q(s,a) ← Q(s,a) + α[r + γ Σ π(a'|s')Q(s',a') - Q(s,a)]
Benefits over SARSA:
- Lower Variance: Averages over actions instead of sampling
- Off-Policy Learning: Can learn optimal policy while exploring
- Better Performance: Often converges faster than SARSA
Famous for: Van Seijen et al. 2009, bridging SARSA and Q-Learning
Constructors
ExpectedSARSAAgent(ExpectedSARSAOptions<T>)
public ExpectedSARSAAgent(ExpectedSARSAOptions<T> options)
Parameters
optionsExpectedSARSAOptions<T>
Properties
FeatureCount
Gets the number of input features (state dimensions).
public override int FeatureCount { get; }
Property Value
ParameterCount
Gets the number of parameters in the agent.
public override int ParameterCount { get; }
Property Value
Remarks
Deep RL agents return parameter counts from neural networks. Classical RL agents (tabular, linear) may have different implementations.
Methods
ApplyGradients(Vector<T>, T)
Applies gradients to update the agent.
public override void ApplyGradients(Vector<T> gradients, T learningRate)
Parameters
gradientsVector<T>learningRateT
Clone()
Clones the agent.
public override IFullModel<T, Vector<T>, Vector<T>> Clone()
Returns
- IFullModel<T, Vector<T>, Vector<T>>
ComputeGradients(Vector<T>, Vector<T>, ILossFunction<T>?)
Computes gradients for the agent.
public override Vector<T> ComputeGradients(Vector<T> input, Vector<T> target, ILossFunction<T>? lossFunction = null)
Parameters
inputVector<T>targetVector<T>lossFunctionILossFunction<T>
Returns
- Vector<T>
Deserialize(byte[])
Deserializes the agent from bytes.
public override void Deserialize(byte[] data)
Parameters
databyte[]
GetModelMetadata()
Gets model metadata.
public override ModelMetadata<T> GetModelMetadata()
Returns
GetParameters()
Gets the agent's parameters.
public override Vector<T> GetParameters()
Returns
- Vector<T>
LoadModel(string)
Loads the agent's state from a file.
public override void LoadModel(string filepath)
Parameters
filepathstringPath to load the agent from.
SaveModel(string)
Saves the agent's state to a file.
public override void SaveModel(string filepath)
Parameters
filepathstringPath to save the agent.
SelectAction(Vector<T>, bool)
Selects an action given the current state observation.
public override Vector<T> SelectAction(Vector<T> state, bool training = true)
Parameters
stateVector<T>The current state observation as a Vector.
trainingboolWhether the agent is in training mode (affects exploration).
Returns
- Vector<T>
Action as a Vector (can be discrete or continuous).
Serialize()
Serializes the agent to bytes.
public override byte[] Serialize()
Returns
- byte[]
SetParameters(Vector<T>)
Sets the agent's parameters.
public override void SetParameters(Vector<T> parameters)
Parameters
parametersVector<T>
StoreExperience(Vector<T>, Vector<T>, T, Vector<T>, bool)
Stores an experience tuple for later learning.
public override void StoreExperience(Vector<T> state, Vector<T> action, T reward, Vector<T> nextState, bool done)
Parameters
stateVector<T>The state before action.
actionVector<T>The action taken.
rewardTThe reward received.
nextStateVector<T>The state after action.
doneboolWhether the episode terminated.
Train()
Performs one training step, updating the agent's policy/value function.
public override T Train()
Returns
- T
The training loss for monitoring.