Table of Contents

Class ReinforcementLearningOptions<T>

Namespace
AiDotNet.ReinforcementLearning.Agents
Assembly
AiDotNet.dll

Configuration options for reinforcement learning agents.

public class ReinforcementLearningOptions<T>

Type Parameters

T

The numeric type used for calculations.

Inheritance
ReinforcementLearningOptions<T>
Derived
Inherited Members

Properties

BatchSize

Batch size for training updates.

public int BatchSize { get; init; }

Property Value

int

DiscountFactor

Discount factor (gamma) for future rewards.

public T? DiscountFactor { get; init; }

Property Value

T

EpsilonDecay

Exploration decay rate.

public double EpsilonDecay { get; init; }

Property Value

double

EpsilonEnd

Final exploration rate.

public double EpsilonEnd { get; init; }

Property Value

double

EpsilonStart

Initial exploration rate (for epsilon-greedy policies).

public double EpsilonStart { get; init; }

Property Value

double

LearningRate

Learning rate for gradient updates.

public T? LearningRate { get; init; }

Property Value

T

LossFunction

Loss function to use for training.

public ILossFunction<T>? LossFunction { get; init; }

Property Value

ILossFunction<T>

MaxGradientNorm

Maximum gradient norm for clipping (0 = no clipping).

public double MaxGradientNorm { get; init; }

Property Value

double

ReplayBufferSize

Size of the replay buffer (if applicable).

public int ReplayBufferSize { get; init; }

Property Value

int

Seed

Random seed for reproducibility (optional).

public int? Seed { get; init; }

Property Value

int?

TargetUpdateFrequency

Frequency of target network updates (if applicable).

public int TargetUpdateFrequency { get; init; }

Property Value

int

UsePrioritizedReplay

Whether to use prioritized experience replay.

public bool UsePrioritizedReplay { get; init; }

Property Value

bool

WarmupSteps

Number of warmup steps before training.

public int WarmupSteps { get; init; }

Property Value

int