Class ReinforcementLearningOptions<T>
- Namespace
- AiDotNet.ReinforcementLearning.Agents
- Assembly
- AiDotNet.dll
Configuration options for reinforcement learning agents.
public class ReinforcementLearningOptions<T>
Type Parameters
TThe numeric type used for calculations.
- Inheritance
-
ReinforcementLearningOptions<T>
- Derived
- Inherited Members
Properties
BatchSize
Batch size for training updates.
public int BatchSize { get; init; }
Property Value
DiscountFactor
Discount factor (gamma) for future rewards.
public T? DiscountFactor { get; init; }
Property Value
- T
EpsilonDecay
Exploration decay rate.
public double EpsilonDecay { get; init; }
Property Value
EpsilonEnd
Final exploration rate.
public double EpsilonEnd { get; init; }
Property Value
EpsilonStart
Initial exploration rate (for epsilon-greedy policies).
public double EpsilonStart { get; init; }
Property Value
LearningRate
Learning rate for gradient updates.
public T? LearningRate { get; init; }
Property Value
- T
LossFunction
Loss function to use for training.
public ILossFunction<T>? LossFunction { get; init; }
Property Value
MaxGradientNorm
Maximum gradient norm for clipping (0 = no clipping).
public double MaxGradientNorm { get; init; }
Property Value
ReplayBufferSize
Size of the replay buffer (if applicable).
public int ReplayBufferSize { get; init; }
Property Value
Seed
Random seed for reproducibility (optional).
public int? Seed { get; init; }
Property Value
- int?
TargetUpdateFrequency
Frequency of target network updates (if applicable).
public int TargetUpdateFrequency { get; init; }
Property Value
UsePrioritizedReplay
Whether to use prioritized experience replay.
public bool UsePrioritizedReplay { get; init; }
Property Value
WarmupSteps
Number of warmup steps before training.
public int WarmupSteps { get; init; }