Class TD3Agent<T>
- Namespace
- AiDotNet.ReinforcementLearning.Agents.TD3
- Assembly
- AiDotNet.dll
Twin Delayed Deep Deterministic Policy Gradient (TD3) agent for continuous control.
public class TD3Agent<T> : DeepReinforcementLearningAgentBase<T>, IRLAgent<T>, IFullModel<T, Vector<T>, Vector<T>>, IModel<Vector<T>, Vector<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Vector<T>, Vector<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Vector<T>, Vector<T>>>, IGradientComputable<T, Vector<T>, Vector<T>>, IJitCompilable<T>, IDisposable
Type Parameters
TThe numeric type used for calculations.
- Inheritance
-
TD3Agent<T>
- Implements
-
IRLAgent<T>
- Inherited Members
- Extension Methods
Remarks
TD3 improves upon DDPG with three key innovations: 1. Twin Q-Networks: Uses two Q-functions to reduce overestimation bias 2. Delayed Policy Updates: Updates policy less frequently than Q-networks 3. Target Policy Smoothing: Adds noise to target actions for robustness
For Beginners: TD3 is one of the best algorithms for continuous control tasks (like robot movement). It's more stable and robust than DDPG.
Key innovations:
- Twin Critics: Uses two Q-networks and takes the minimum to avoid overoptimism
- Delayed Updates: Waits before updating the policy to let Q-values stabilize
- Target Smoothing: Adds noise to target actions to prevent exploitation of errors
Think of it like getting a second opinion before making decisions, and taking time to verify information before acting on it.
Used by: Robotic control, autonomous systems, continuous optimization
Constructors
TD3Agent(TD3Options<T>)
public TD3Agent(TD3Options<T> options)
Parameters
optionsTD3Options<T>
Properties
FeatureCount
Gets the number of input features (state dimensions).
public override int FeatureCount { get; }
Property Value
Methods
ApplyGradients(Vector<T>, T)
Applies gradients to update the agent.
public override void ApplyGradients(Vector<T> gradients, T learningRate)
Parameters
gradientsVector<T>learningRateT
Clone()
Clones the agent.
public override IFullModel<T, Vector<T>, Vector<T>> Clone()
Returns
- IFullModel<T, Vector<T>, Vector<T>>
ComputeGradients(Vector<T>, Vector<T>, ILossFunction<T>?)
Computes gradients for the agent.
public override Vector<T> ComputeGradients(Vector<T> input, Vector<T> target, ILossFunction<T>? lossFunction = null)
Parameters
inputVector<T>targetVector<T>lossFunctionILossFunction<T>
Returns
- Vector<T>
Deserialize(byte[])
Deserializes the agent from bytes.
public override void Deserialize(byte[] data)
Parameters
databyte[]
GetMetrics()
Gets the current training metrics.
public override Dictionary<string, T> GetMetrics()
Returns
- Dictionary<string, T>
Dictionary of metric names to values.
GetModelMetadata()
Gets model metadata.
public override ModelMetadata<T> GetModelMetadata()
Returns
GetParameters()
Gets the agent's parameters.
public override Vector<T> GetParameters()
Returns
- Vector<T>
LoadModel(string)
Loads the agent's state from a file.
public override void LoadModel(string filepath)
Parameters
filepathstringPath to load the agent from.
Predict(Vector<T>)
Makes a prediction using the trained agent.
public override Vector<T> Predict(Vector<T> input)
Parameters
inputVector<T>
Returns
- Vector<T>
PredictAsync(Vector<T>)
public Task<Vector<T>> PredictAsync(Vector<T> input)
Parameters
inputVector<T>
Returns
- Task<Vector<T>>
ResetEpisode()
Resets episode-specific state (if any).
public override void ResetEpisode()
SaveModel(string)
Saves the agent's state to a file.
public override void SaveModel(string filepath)
Parameters
filepathstringPath to save the agent.
SelectAction(Vector<T>, bool)
Selects an action given the current state observation.
public override Vector<T> SelectAction(Vector<T> state, bool training = true)
Parameters
stateVector<T>The current state observation as a Vector.
trainingboolWhether the agent is in training mode (affects exploration).
Returns
- Vector<T>
Action as a Vector (can be discrete or continuous).
Serialize()
Serializes the agent to bytes.
public override byte[] Serialize()
Returns
- byte[]
SetParameters(Vector<T>)
Sets the agent's parameters.
public override void SetParameters(Vector<T> parameters)
Parameters
parametersVector<T>
StoreExperience(Vector<T>, Vector<T>, T, Vector<T>, bool)
Stores an experience tuple for later learning.
public override void StoreExperience(Vector<T> state, Vector<T> action, T reward, Vector<T> nextState, bool done)
Parameters
stateVector<T>The state before action.
actionVector<T>The action taken.
rewardTThe reward received.
nextStateVector<T>The state after action.
doneboolWhether the episode terminated.
Train()
Performs one training step, updating the agent's policy/value function.
public override T Train()
Returns
- T
The training loss for monitoring.
TrainAsync()
public Task TrainAsync()