Table of Contents

Class EpsilonGreedyExploration<T>

Namespace
AiDotNet.ReinforcementLearning.Policies.Exploration
Assembly
AiDotNet.dll

Epsilon-greedy exploration: with probability epsilon, select random action.

public class EpsilonGreedyExploration<T> : ExplorationStrategyBase<T>, IExplorationStrategy<T>

Type Parameters

T

The numeric type used for calculations.

Inheritance
EpsilonGreedyExploration<T>
Implements
Inherited Members

Constructors

EpsilonGreedyExploration(double, double, double)

public EpsilonGreedyExploration(double epsilonStart = 1, double epsilonEnd = 0.01, double epsilonDecay = 0.995)

Parameters

epsilonStart double
epsilonEnd double
epsilonDecay double

Properties

CurrentEpsilon

public double CurrentEpsilon { get; }

Property Value

double

Methods

GetExplorationAction(Vector<T>, Vector<T>, int, Random)

Modifies or replaces the policy's action for exploration.

public override Vector<T> GetExplorationAction(Vector<T> state, Vector<T> policyAction, int actionSpaceSize, Random random)

Parameters

state Vector<T>

The current state.

policyAction Vector<T>

The action suggested by the policy.

actionSpaceSize int

The number of possible actions.

random Random

Random number generator for stochastic exploration.

Returns

Vector<T>

The action to take after applying exploration.

Reset()

Resets internal state (e.g., for new episodes or training sessions).

public override void Reset()

Update()

Updates internal parameters (e.g., epsilon decay, noise reduction). Called after each training step.

public override void Update()