Class PANNsModel<T>
- Namespace
- AiDotNet.Audio.Fingerprinting
- Assembly
- AiDotNet.dll
PANNs (Pretrained Audio Neural Networks) - Large-scale pretrained CNN models for audio pattern recognition.
public class PANNsModel<T> : AudioNeuralNetworkBase<T>, INeuralNetworkModel<T>, INeuralNetwork<T>, IFullModel<T, Tensor<T>, Tensor<T>>, IModel<Tensor<T>, Tensor<T>, ModelMetadata<T>>, IModelSerializer, ICheckpointableModel, IParameterizable<T, Tensor<T>, Tensor<T>>, IFeatureAware, IFeatureImportance<T>, ICloneable<IFullModel<T, Tensor<T>, Tensor<T>>>, IGradientComputable<T, Tensor<T>, Tensor<T>>, IJitCompilable<T>, IInterpretableModel<T>, IInputGradientComputable<T>, IDisposable, IAudioFingerprinter<T>
Type Parameters
TThe numeric type used for calculations.
- Inheritance
-
PANNsModel<T>
- Implements
- Inherited Members
- Extension Methods
Remarks
PANNs are convolutional neural networks pretrained on AudioSet (2 million audio clips, 527 classes). They provide state-of-the-art audio embeddings that can be used for:
- Audio tagging (multi-label classification)
- Sound event detection (localization in time)
- Audio fingerprinting and retrieval
- Transfer learning for custom audio tasks
For Beginners: PANNs are like ImageNet-pretrained models but for audio!
Just as image models can recognize cats, dogs, and cars after seeing millions of images, PANNs can recognize 527 different sounds after hearing 2 million audio clips:
- Musical instruments (piano, guitar, drums)
- Human sounds (speech, laughter, coughing)
- Environmental sounds (rain, thunder, traffic)
- Animal sounds (dog bark, bird song)
- And many more!
Use cases:
- "What sounds are in this audio?" (audio tagging)
- "When does the dog bark?" (sound event detection)
- "Find similar sounding audio" (audio retrieval)
- Build custom sound classifiers with less training data
Reference: Kong, Q., et al. (2020). PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition.
Constructors
PANNsModel(NeuralNetworkArchitecture<T>, int, PANNsArchitecture, int, int, int, int, int, double, IGradientBasedOptimizer<T, Tensor<T>, Tensor<T>>?, ILossFunction<T>?)
Initializes a new instance of the PANNsModel<T> class for native training mode.
public PANNsModel(NeuralNetworkArchitecture<T> architecture, int sampleRate = 32000, PANNsArchitecture architectureType = PANNsArchitecture.Cnn14, int numClasses = 527, int embeddingDim = 2048, int numMelBands = 64, int windowSize = 1024, int hopSize = 320, double dropout = 0.2, IGradientBasedOptimizer<T, Tensor<T>, Tensor<T>>? optimizer = null, ILossFunction<T>? lossFunction = null)
Parameters
architectureNeuralNetworkArchitecture<T>The neural network architecture defining input/output dimensions.
sampleRateintSample rate of input audio (default: 32000 Hz).
architectureTypePANNsArchitectureCNN architecture variant (default: Cnn14).
numClassesintNumber of output classes (default: 527 for AudioSet).
embeddingDimintEmbedding dimension (default: 2048).
numMelBandsintNumber of mel spectrogram bands (default: 64).
windowSizeintSTFT window size (default: 1024).
hopSizeintSTFT hop size (default: 320).
dropoutdoubleDropout rate (default: 0.2).
optimizerIGradientBasedOptimizer<T, Tensor<T>, Tensor<T>>Optimizer for training. If null, a default Adam optimizer is used.
lossFunctionILossFunction<T>Loss function. If null, BCE loss is used for multi-label.
PANNsModel(NeuralNetworkArchitecture<T>, string, int, int, int, OnnxModelOptions?)
Initializes a new instance of the PANNsModel<T> class for ONNX inference mode.
public PANNsModel(NeuralNetworkArchitecture<T> architecture, string modelPath, int sampleRate = 32000, int numClasses = 527, int embeddingDim = 2048, OnnxModelOptions? onnxOptions = null)
Parameters
architectureNeuralNetworkArchitecture<T>The neural network architecture defining input/output dimensions.
modelPathstringPath to the ONNX model file.
sampleRateintSample rate of input audio (default: 32000 Hz).
numClassesintNumber of output classes (default: 527 for AudioSet).
embeddingDimintEmbedding dimension (default: 2048).
onnxOptionsOnnxModelOptionsOptional ONNX model options.
Exceptions
- FileNotFoundException
Thrown when the ONNX model file is not found.
Properties
ArchitectureType
Gets the architecture type.
public PANNsArchitecture ArchitectureType { get; }
Property Value
EmbeddingDimension
Gets the embedding dimension.
public int EmbeddingDimension { get; }
Property Value
FingerprintLength
Gets the fingerprint length in bits or elements.
public int FingerprintLength { get; }
Property Value
Name
Gets the name of the fingerprinting algorithm.
public string Name { get; }
Property Value
NumClasses
Gets the number of output classes (527 for AudioSet).
public int NumClasses { get; }
Property Value
Methods
Classify(Tensor<T>, double)
Classifies audio into AudioSet categories.
public Dictionary<string, double> Classify(Tensor<T> audio, double threshold = 0.5)
Parameters
audioTensor<T>Audio tensor to classify.
thresholddoubleProbability threshold for positive labels (default: 0.5).
Returns
- Dictionary<string, double>
Dictionary of label to probability for labels above threshold.
ComputeSimilarity(AudioFingerprint<T>, AudioFingerprint<T>)
Computes the similarity between two fingerprints.
public double ComputeSimilarity(AudioFingerprint<T> fp1, AudioFingerprint<T> fp2)
Parameters
fp1AudioFingerprint<T>First fingerprint.
fp2AudioFingerprint<T>Second fingerprint.
Returns
- double
Similarity score (0-1, higher is more similar).
CreateNewInstance()
Creates a new instance of the same type as this neural network.
protected override IFullModel<T, Tensor<T>, Tensor<T>> CreateNewInstance()
Returns
- IFullModel<T, Tensor<T>, Tensor<T>>
A new instance of the same neural network type.
Remarks
For Beginners: This creates a blank version of the same type of neural network.
It's used internally by methods like DeepCopy and Clone to create the right type of network before copying the data into it.
Deserialize(byte[])
Deserializes the neural network from a byte array.
public override void Deserialize(byte[] data)
Parameters
databyte[]The byte array containing the serialized neural network data.
DeserializeNetworkSpecificData(BinaryReader)
Deserializes network-specific data that was not covered by the general deserialization process.
protected override void DeserializeNetworkSpecificData(BinaryReader reader)
Parameters
readerBinaryReaderThe BinaryReader to read the data from.
Remarks
This method is called at the end of the general deserialization process to allow derived classes to read any additional data specific to their implementation.
For Beginners: Continuing the suitcase analogy, this is like unpacking that special compartment. After the main deserialization method has unpacked the common items (layers, parameters), this method allows each specific type of neural network to unpack its own unique items that were stored during serialization.
ExtractEmbedding(Tensor<T>)
Extracts audio embedding.
public Tensor<T> ExtractEmbedding(Tensor<T> audio)
Parameters
audioTensor<T>Audio tensor [samples] or [batch, samples].
Returns
- Tensor<T>
Audio embedding [batch, embeddingDim].
FindMatches(AudioFingerprint<T>, AudioFingerprint<T>, int)
Finds matching segments between two fingerprints.
public IReadOnlyList<FingerprintMatch> FindMatches(AudioFingerprint<T> query, AudioFingerprint<T> reference, int minMatchLength = 10)
Parameters
queryAudioFingerprint<T>The query fingerprint.
referenceAudioFingerprint<T>The reference fingerprint to search in.
minMatchLengthintMinimum length of matching segment.
Returns
- IReadOnlyList<FingerprintMatch>
List of matching segments with time offsets.
Fingerprint(Tensor<T>)
Generates a fingerprint from audio data.
public AudioFingerprint<T> Fingerprint(Tensor<T> audio)
Parameters
audioTensor<T>Audio samples as a tensor (mono audio).
Returns
- AudioFingerprint<T>
The audio fingerprint.
Fingerprint(Vector<T>)
Generates a fingerprint from audio data.
public AudioFingerprint<T> Fingerprint(Vector<T> audio)
Parameters
audioVector<T>Audio samples as a vector (mono audio).
Returns
- AudioFingerprint<T>
The audio fingerprint.
GetModelMetadata()
Gets the metadata for this neural network model.
public override ModelMetadata<T> GetModelMetadata()
Returns
- ModelMetadata<T>
A ModelMetaData object containing information about the model.
GetTopK(Tensor<T>, int)
Gets top-k predictions.
public List<(string Label, double Probability)> GetTopK(Tensor<T> audio, int k = 5)
Parameters
audioTensor<T>Audio tensor to classify.
kintNumber of top predictions to return.
Returns
- List<(string Label, double Confidence)>
Top-k predictions with probabilities.
InitializeLayers()
Initializes the neural network layers.
protected override void InitializeLayers()
PostprocessOutput(Tensor<T>)
Postprocesses model output.
protected override Tensor<T> PostprocessOutput(Tensor<T> modelOutput)
Parameters
modelOutputTensor<T>
Returns
- Tensor<T>
Predict(Tensor<T>)
Predicts audio class logits.
public override Tensor<T> Predict(Tensor<T> input)
Parameters
inputTensor<T>
Returns
- Tensor<T>
PreprocessAudio(Tensor<T>)
Preprocesses raw audio waveform for model input.
protected override Tensor<T> PreprocessAudio(Tensor<T> rawAudio)
Parameters
rawAudioTensor<T>
Returns
- Tensor<T>
Serialize()
Serializes the neural network to a byte array.
public override byte[] Serialize()
Returns
- byte[]
A byte array representing the serialized neural network.
SerializeNetworkSpecificData(BinaryWriter)
Serializes network-specific data that is not covered by the general serialization process.
protected override void SerializeNetworkSpecificData(BinaryWriter writer)
Parameters
writerBinaryWriterThe BinaryWriter to write the data to.
Remarks
This method is called at the end of the general serialization process to allow derived classes to write any additional data specific to their implementation.
For Beginners: Think of this as packing a special compartment in your suitcase. While the main serialization method packs the common items (layers, parameters), this method allows each specific type of neural network to pack its own unique items that other networks might not have.
Train(Tensor<T>, Tensor<T>)
Trains the model on audio-label pairs.
public override void Train(Tensor<T> input, Tensor<T> expected)
Parameters
inputTensor<T>expectedTensor<T>
Remarks
Note: Full training from scratch is not yet implemented. PANNs models are designed to be used as pre-trained feature extractors. For best results: - Use ONNX mode with pre-trained weights for inference - Fine-tune only the final classification layers if needed
UpdateParameters(Vector<T>)
Updates the network's parameters with new values.
public override void UpdateParameters(Vector<T> gradients)
Parameters
gradientsVector<T>
Remarks
For Beginners: During training, a neural network's internal values (parameters) get adjusted to improve its performance. This method allows you to update all those values at once by providing a complete set of new parameters.
This is typically used by optimization algorithms that calculate better parameter values based on training data.