Table of Contents

Namespace AiDotNet.Preprocessing.DimensionalityReduction

Classes

DictionaryLearning<T>

Dictionary Learning for sparse representation.

DiffusionMaps<T>

Diffusion Maps for nonlinear dimensionality reduction.

FactorAnalysis<T>

Factor Analysis for dimensionality reduction with noise modeling.

FastICA<T>

Fast Independent Component Analysis (FastICA) for blind source separation.

HessianLLE<T>

Hessian Locally Linear Embedding for nonlinear dimensionality reduction.

IncrementalPCA<T>

Incremental Principal Component Analysis for large datasets.

Isomap<T>

Isomap (Isometric Mapping) for nonlinear dimensionality reduction.

KernelPCA<T>

Kernel Principal Component Analysis for non-linear dimensionality reduction.

LTSA<T>

Local Tangent Space Alignment for nonlinear dimensionality reduction.

LaplacianEigenmaps<T>

Laplacian Eigenmaps for nonlinear dimensionality reduction.

LargeVis<T>

LargeVis for large-scale visualization and dimensionality reduction.

LatentDirichletAllocation<T>

Latent Dirichlet Allocation for topic modeling.

LocallyLinearEmbedding<T>

Locally Linear Embedding for nonlinear dimensionality reduction.

MDS<T>

Multidimensional Scaling for dimensionality reduction.

MiniBatchSparsePCA<T>

Mini-batch Sparse PCA using online dictionary learning.

ModifiedLLE<T>

Modified Locally Linear Embedding with regularization.

NCA<T>

Neighborhood Components Analysis (NCA) for supervised dimensionality reduction.

NMF<T>

Non-negative Matrix Factorization for dimensionality reduction.

PCA<T>

Principal Component Analysis for dimensionality reduction.

PHATE<T>

PHATE: Potential of Heat-diffusion for Affinity-based Transition Embedding.

PaCMAP<T>

PaCMAP: Pairwise Controlled Manifold Approximation.

ProbabilisticPCA<T>

Probabilistic Principal Component Analysis (PPCA).

RandomProjection<T>

Random Projection for dimensionality reduction.

RandomizedPCA<T>

Randomized PCA using randomized SVD for efficient computation.

SparsePCA<T>

Sparse Principal Component Analysis using L1 regularization.

SpectralEmbedding<T>

Spectral Embedding for nonlinear dimensionality reduction.

TSNE<T>

t-Distributed Stochastic Neighbor Embedding for visualization.

TriMAP<T>

TriMAP: Large-scale Dimensionality Reduction Using Triplets.

TruncatedSVD<T>

Truncated Singular Value Decomposition for dimensionality reduction.

UMAP<T>

Uniform Manifold Approximation and Projection for dimensionality reduction.

Enums

DictionaryFitAlgorithm

Specifies the algorithm for fitting the dictionary.

FactorRotation

Specifies the rotation method for Factor Analysis.

ICAAlgorithm

Specifies the ICA algorithm type.

ICAFunction

Specifies the non-linearity function for ICA.

IsomapNeighborAlgorithm

Specifies the neighbor search algorithm for Isomap.

IsomapPathAlgorithm

Specifies the shortest path algorithm for Isomap.

KernelType

Specifies the kernel type for Kernel PCA.

LLEMethod

Specifies the LLE algorithm variant.

LaplacianAffinityType

Specifies the affinity type for Laplacian Eigenmaps.

LdaLearningMethod

Specifies the learning method for LDA.

MDSMetric

Specifies the distance metric for MDS.

MDSType

Specifies the type of MDS algorithm.

NMFInit

Specifies the initialization method for NMF.

NMFSolver

Specifies the solver for NMF optimization.

RandomProjectionType

Specifies the type of random projection.

SparseCodingAlgorithm

Specifies the algorithm for sparse coding (transform).

SpectralAffinity

Specifies how to construct the affinity matrix for Spectral Embedding.

TSNEInitialization

Specifies the initialization method for t-SNE.

TSNEMetric

Specifies the distance metric for t-SNE.

UMAPMetric

Specifies the distance metric for UMAP.