Class TruncatedSVD<T>
- Namespace
- AiDotNet.Preprocessing.DimensionalityReduction
- Assembly
- AiDotNet.dll
Truncated Singular Value Decomposition for dimensionality reduction.
public class TruncatedSVD<T> : TransformerBase<T, Matrix<T>, Matrix<T>>, IDataTransformer<T, Matrix<T>, Matrix<T>>
Type Parameters
TThe numeric type for calculations (e.g., float, double).
- Inheritance
-
TruncatedSVD<T>
- Implements
- Inherited Members
Remarks
TruncatedSVD performs dimensionality reduction by computing the truncated singular value decomposition. Unlike PCA, it does not center the data, making it suitable for sparse matrices (e.g., TF-IDF from text).
Also known as Latent Semantic Analysis (LSA) when applied to document-term matrices.
For Beginners: SVD is similar to PCA but: - Doesn't center the data (preserves sparsity in sparse matrices) - Can be more memory-efficient for large sparse datasets - Often used for text analysis (finding hidden topics in documents)
Example: In text analysis, TruncatedSVD can find that "car" and "automobile" are related even if they never appear together in the same document.
Constructors
TruncatedSVD(int, int, int, int[]?)
Creates a new instance of TruncatedSVD<T>.
public TruncatedSVD(int nComponents = 2, int nIterations = 5, int randomState = 0, int[]? columnIndices = null)
Parameters
nComponentsintNumber of components to keep. Defaults to 2.
nIterationsintNumber of iterations for randomized SVD. Defaults to 5.
randomStateintRandom seed for reproducibility. Defaults to 0.
columnIndicesint[]The column indices to use, or null for all columns.
Properties
Components
Gets the components (right singular vectors).
public double[,]? Components { get; }
Property Value
- double[,]
ExplainedVariance
Gets the explained variance for each component.
public double[]? ExplainedVariance { get; }
Property Value
- double[]
ExplainedVarianceRatio
Gets the explained variance ratio for each component.
public double[]? ExplainedVarianceRatio { get; }
Property Value
- double[]
NComponents
Gets the number of components.
public int NComponents { get; }
Property Value
NIterations
Gets the number of iterations for randomized SVD.
public int NIterations { get; }
Property Value
SingularValues
Gets the singular values.
public double[]? SingularValues { get; }
Property Value
- double[]
SupportsInverseTransform
Gets whether this transformer supports inverse transformation.
public override bool SupportsInverseTransform { get; }
Property Value
Methods
FitCore(Matrix<T>)
Fits TruncatedSVD by computing singular value decomposition.
protected override void FitCore(Matrix<T> data)
Parameters
dataMatrix<T>The training data matrix.
GetFeatureNamesOut(string[]?)
Gets the output feature names after transformation.
public override string[] GetFeatureNamesOut(string[]? inputFeatureNames = null)
Parameters
inputFeatureNamesstring[]
Returns
- string[]
InverseTransformCore(Matrix<T>)
Transforms data back to original space.
protected override Matrix<T> InverseTransformCore(Matrix<T> data)
Parameters
dataMatrix<T>The transformed data.
Returns
- Matrix<T>
Data in original feature space.
TransformCore(Matrix<T>)
Transforms the data by projecting onto singular vectors.
protected override Matrix<T> TransformCore(Matrix<T> data)
Parameters
dataMatrix<T>The data to transform.
Returns
- Matrix<T>
The transformed data.