Class SelectFpr<T>
- Namespace
- AiDotNet.Preprocessing.FeatureSelection
- Assembly
- AiDotNet.dll
Selects features based on a false positive rate test.
public class SelectFpr<T> : TransformerBase<T, Matrix<T>, Matrix<T>>, IDataTransformer<T, Matrix<T>, Matrix<T>>
Type Parameters
TThe numeric type for calculations (e.g., float, double).
- Inheritance
-
SelectFpr<T>
- Implements
- Inherited Members
Remarks
SelectFpr selects features whose p-value is below a threshold (alpha). This controls the expected percentage of false positives among all features.
For example, with alpha=0.05, we expect about 5% of the selected features to be false positives (features that passed the test by chance).
For Beginners: This selector uses statistical significance: - Computes a p-value for each feature (how likely it's just noise) - Keeps features with p-value below alpha (threshold) - Lower alpha = stricter selection = fewer false positives
Constructors
SelectFpr(double, SelectKBestScoreFunc, int[]?)
Creates a new instance of SelectFpr<T>.
public SelectFpr(double alpha = 0.05, SelectKBestScoreFunc scoringFunction = SelectKBestScoreFunc.FRegression, int[]? columnIndices = null)
Parameters
alphadoubleSignificance level for feature selection. Defaults to 0.05.
scoringFunctionSelectKBestScoreFuncThe scoring function to use. Defaults to FRegression.
columnIndicesint[]The column indices to evaluate, or null for all columns.
Properties
Alpha
Gets the significance level (alpha).
public double Alpha { get; }
Property Value
PValues
Gets the p-values for each feature.
public double[]? PValues { get; }
Property Value
- double[]
Scores
Gets the scores for each feature.
public double[]? Scores { get; }
Property Value
- double[]
ScoringFunction
Gets the scoring function used.
public SelectKBestScoreFunc ScoringFunction { get; }
Property Value
SelectedIndices
Gets the indices of selected features.
public int[]? SelectedIndices { get; }
Property Value
- int[]
SupportsInverseTransform
Gets whether this transformer supports inverse transformation.
public override bool SupportsInverseTransform { get; }
Property Value
Methods
Fit(Matrix<T>, Vector<T>)
Fits the selector by computing p-values.
public void Fit(Matrix<T> data, Vector<T> target)
Parameters
dataMatrix<T>The feature matrix.
targetVector<T>The target values.
FitCore(Matrix<T>)
Fits the selector (requires target via specialized Fit method).
protected override void FitCore(Matrix<T> data)
Parameters
dataMatrix<T>
FitTransform(Matrix<T>, Vector<T>)
Fits and transforms the data.
public Matrix<T> FitTransform(Matrix<T> data, Vector<T> target)
Parameters
dataMatrix<T>targetVector<T>
Returns
- Matrix<T>
GetFeatureNamesOut(string[]?)
Gets the output feature names after transformation.
public override string[] GetFeatureNamesOut(string[]? inputFeatureNames = null)
Parameters
inputFeatureNamesstring[]
Returns
- string[]
GetSupportMask()
Gets the support mask indicating which features are selected.
public bool[] GetSupportMask()
Returns
- bool[]
InverseTransformCore(Matrix<T>)
Inverse transformation is not supported.
protected override Matrix<T> InverseTransformCore(Matrix<T> data)
Parameters
dataMatrix<T>
Returns
- Matrix<T>
TransformCore(Matrix<T>)
Transforms the data by selecting significant features.
protected override Matrix<T> TransformCore(Matrix<T> data)
Parameters
dataMatrix<T>
Returns
- Matrix<T>