Table of Contents

Class SelectPercentile<T>

Namespace
AiDotNet.Preprocessing.FeatureSelection
Assembly
AiDotNet.dll

Selects features according to a percentile of the highest scores.

public class SelectPercentile<T> : TransformerBase<T, Matrix<T>, Matrix<T>>, IDataTransformer<T, Matrix<T>, Matrix<T>>

Type Parameters

T

The numeric type for calculations (e.g., float, double).

Inheritance
TransformerBase<T, Matrix<T>, Matrix<T>>
SelectPercentile<T>
Implements
IDataTransformer<T, Matrix<T>, Matrix<T>>
Inherited Members

Remarks

SelectPercentile selects the top percentile of features based on a scoring function. For example, selecting the top 10% of features ranked by F-score.

This is similar to SelectKBest but uses a relative threshold (percentile) instead of an absolute number of features.

For Beginners: Instead of specifying an exact number of features: - SelectPercentile(50) keeps the top 50% of features - The actual number depends on your original feature count - Useful when you want a proportion, not an absolute count

Constructors

SelectPercentile(double, SelectKBestScoreFunc, int[]?)

Creates a new instance of SelectPercentile<T>.

public SelectPercentile(double percentile = 10, SelectKBestScoreFunc scoringFunction = SelectKBestScoreFunc.FRegression, int[]? columnIndices = null)

Parameters

percentile double

Percentile of features to select (0-100). Defaults to 10.

scoringFunction SelectKBestScoreFunc

The scoring function to use. Defaults to FRegression.

columnIndices int[]

The column indices to evaluate, or null for all columns.

Properties

PValues

Gets the p-values for each feature.

public double[]? PValues { get; }

Property Value

double[]

Percentile

Gets the percentile of features to select (0-100).

public double Percentile { get; }

Property Value

double

Scores

Gets the scores for each feature.

public double[]? Scores { get; }

Property Value

double[]

ScoringFunction

Gets the scoring function used.

public SelectKBestScoreFunc ScoringFunction { get; }

Property Value

SelectKBestScoreFunc

SelectedIndices

Gets the indices of selected features.

public int[]? SelectedIndices { get; }

Property Value

int[]

SupportsInverseTransform

Gets whether this transformer supports inverse transformation.

public override bool SupportsInverseTransform { get; }

Property Value

bool

Methods

Fit(Matrix<T>, Vector<T>)

Fits the selector by computing feature scores.

public void Fit(Matrix<T> data, Vector<T> target)

Parameters

data Matrix<T>

The feature matrix.

target Vector<T>

The target values.

FitCore(Matrix<T>)

Fits the selector (requires target via specialized Fit method).

protected override void FitCore(Matrix<T> data)

Parameters

data Matrix<T>

FitTransform(Matrix<T>, Vector<T>)

Fits and transforms the data.

public Matrix<T> FitTransform(Matrix<T> data, Vector<T> target)

Parameters

data Matrix<T>
target Vector<T>

Returns

Matrix<T>

GetFeatureNamesOut(string[]?)

Gets the output feature names after transformation.

public override string[] GetFeatureNamesOut(string[]? inputFeatureNames = null)

Parameters

inputFeatureNames string[]

Returns

string[]

GetSupportMask()

Gets the support mask indicating which features are selected.

public bool[] GetSupportMask()

Returns

bool[]

InverseTransformCore(Matrix<T>)

Inverse transformation is not supported.

protected override Matrix<T> InverseTransformCore(Matrix<T> data)

Parameters

data Matrix<T>

Returns

Matrix<T>

TransformCore(Matrix<T>)

Transforms the data by selecting top percentile features.

protected override Matrix<T> TransformCore(Matrix<T> data)

Parameters

data Matrix<T>

Returns

Matrix<T>