Class Normalizer<T>
- Namespace
- AiDotNet.Preprocessing.Scalers
- Assembly
- AiDotNet.dll
Normalizes samples (rows) individually to unit norm (L1, L2, or Max).
public class Normalizer<T> : TransformerBase<T, Matrix<T>, Matrix<T>>, IDataTransformer<T, Matrix<T>, Matrix<T>>
Type Parameters
TThe numeric type for calculations (e.g., float, double).
- Inheritance
-
Normalizer<T>
- Implements
- Inherited Members
Remarks
Unlike scalers that operate on columns (features), this normalizer operates on rows (samples). Each sample is scaled to have a unit norm (length of 1) in the specified norm type. This is useful when the magnitude of samples varies but their direction matters.
For Beginners: This normalizer scales each row so its "length" equals 1: - L1 norm: The sum of absolute values equals 1 - L2 norm: The Euclidean length (sqrt of sum of squares) equals 1 - Max norm: The maximum absolute value equals 1
Example with L2 norm: [3, 4] has length 5, so it becomes [0.6, 0.8] (length = 1)
Constructors
Normalizer(NormType, int[]?)
Creates a new instance of Normalizer<T>.
public Normalizer(NormType normType = NormType.L2, int[]? columnIndices = null)
Parameters
normTypeNormTypeThe type of norm to use (L1, L2, or Max). Defaults to L2.
columnIndicesint[]The column indices to include in normalization, or null for all columns.
Properties
NormType
Gets the norm type used for normalization.
public NormType NormType { get; }
Property Value
SupportsInverseTransform
Gets whether this transformer supports inverse transformation.
public override bool SupportsInverseTransform { get; }
Property Value
Remarks
Inverse transform is not supported because the original row norms are not stored.
Methods
FitCore(Matrix<T>)
Fits the normalizer to the training data.
protected override void FitCore(Matrix<T> data)
Parameters
dataMatrix<T>The training data matrix.
Remarks
Normalizer is stateless for transformation - fitting validates the data structure.
GetFeatureNamesOut(string[]?)
Gets the output feature names after transformation.
public override string[] GetFeatureNamesOut(string[]? inputFeatureNames = null)
Parameters
inputFeatureNamesstring[]The input feature names.
Returns
- string[]
The same feature names (Normalizer doesn't change number of features).
InverseTransformCore(Matrix<T>)
Inverse transformation is not supported for sample normalization.
protected override Matrix<T> InverseTransformCore(Matrix<T> data)
Parameters
dataMatrix<T>The normalized data.
Returns
- Matrix<T>
Never returns - always throws.
Exceptions
- NotSupportedException
Always thrown because sample norms are not stored.
TransformCore(Matrix<T>)
Transforms the data by normalizing each row to unit norm.
protected override Matrix<T> TransformCore(Matrix<T> data)
Parameters
dataMatrix<T>The data to transform.
Returns
- Matrix<T>
The normalized data where each row has unit norm.